arviz.mcse — ArviZ dev documentation (original) (raw)

arviz.mcse(data, *, var_names=None, method='mean', prob=None, dask_kwargs=None)[source]#

Calculate Markov Chain Standard Error statistic.

Parameters:

dataobj

Any object that can be converted to an arviz.InferenceData object Refer to documentation of arviz.convert_to_dataset() for details For ndarray: shape = (chain, draw). For n-dimensional ndarray transform first to dataset with az.convert_to_dataset.

var_nameslist

Names of variables to include in the rhat report

methodstr

Select mcse method. Valid methods are: - “mean” - “sd” - “median” - “quantile”

probfloat

Quantile information.

dask_kwargsdict, optional

Dask related kwargs passed to wrap_xarray_ufunc().

Returns:

xarray.Dataset

Return the msce dataset

See also

ess

Compute autocovariance estimates for every lag for the input array.

summary

Create a data frame with summary statistics.

plot_mcse

Plot quantile or local Monte Carlo Standard Error.

Examples

Calculate the Markov Chain Standard Error using the default arguments:

In [1]: import arviz as az ...: data = az.load_arviz_data("non_centered_eight") ...: az.mcse(data) ...: Out[1]: <xarray.Dataset> Size: 656B Dimensions: (school: 8) Coordinates:

Calculate the Markov Chain Standard Error using the quantile method:

In [2]: az.mcse(data, method="quantile", prob=0.7) Out[2]: <xarray.Dataset> Size: 656B Dimensions: (school: 8) Coordinates: