Shr in std::ops - Rust (original) (raw)
Trait std::ops::Shr
pub trait Shr<Rhs = Self> {
type Output;
fn shr(self, rhs: Rhs) -> Self::Output;
}
Expand description
The right shift operator >>
. Note that because this trait is implemented for all integer types with multiple right-hand-side types, Rust’s type checker has special handling for _ >> _
, setting the result type for integer operations to the type of the left-hand-side operand. This means that though a >> b
and a.shr(b)
are one and the same from an evaluation standpoint, they are different when it comes to type inference.
An implementation of Shr
that lifts the >>
operation on integers to a wrapper around usize
.
use std::ops::Shr;
#[derive(PartialEq, Debug)]
struct Scalar(usize);
impl Shr<Scalar> for Scalar {
type Output = Self;
fn shr(self, Self(rhs): Self) -> Self::Output {
let Self(lhs) = self;
Self(lhs >> rhs)
}
}
assert_eq!(Scalar(16) >> Scalar(2), Scalar(4));
An implementation of Shr
that spins a vector rightward by a given amount.
use std::ops::Shr;
#[derive(PartialEq, Debug)]
struct SpinVector<T: Clone> {
vec: Vec<T>,
}
impl<T: Clone> Shr<usize> for SpinVector<T> {
type Output = Self;
fn shr(self, rhs: usize) -> Self::Output {
// Rotate the vector by `rhs` places.
let (a, b) = self.vec.split_at(self.vec.len() - rhs);
let mut spun_vector = vec![];
spun_vector.extend_from_slice(b);
spun_vector.extend_from_slice(a);
Self { vec: spun_vector }
}
}
assert_eq!(SpinVector { vec: vec![0, 1, 2, 3, 4] } >> 2,
SpinVector { vec: vec![3, 4, 0, 1, 2] });
The resulting type after applying the >>
operator.
Performs the >>
operation.
assert_eq!(5u8 >> 1, 2);
assert_eq!(2u8 >> 1, 1);
impl<'_, '_> Shr<&'_ i8> for &'_ i8
impl<'_, '_> Shr<&'_ i8> for &'_ u8
impl<'_, '_> Shr<&'_ u8> for &'_ i8
impl<'_, '_> Shr<&'_ u8> for &'_ u8
impl<'_, T, const LANES: usize> Shr<&'_ Simd<T, LANES>> for Simd<T, LANES> where
T: SimdElement,
Simd<T, LANES>: Shr<Simd<T, LANES>>,
LaneCount: SupportedLaneCount,
<Simd<T, LANES> as Shr<Simd<T, LANES>>>::Output == Simd<T, LANES>,
impl<'_, T, const LANES: usize> Shr<Simd<T, LANES>> for &'_ Simd<T, LANES> where
T: SimdElement,
Simd<T, LANES>: Shr<Simd<T, LANES>>,
LaneCount: SupportedLaneCount,
<Simd<T, LANES> as Shr<Simd<T, LANES>>>::Output == Simd<T, LANES>,
impl<'lhs, 'rhs, T, const LANES: usize> Shr<&'rhs Simd<T, LANES>> for &'lhs Simd<T, LANES> where
T: SimdElement,
Simd<T, LANES>: Shr<Simd<T, LANES>>,
LaneCount: SupportedLaneCount,
<Simd<T, LANES> as Shr<Simd<T, LANES>>>::Output == Simd<T, LANES>,