AtomicUsize in std::sync::atomic - Rust (original) (raw)
#[repr(C, align(8))]
pub struct AtomicUsize { /* private fields */ }
Expand description
An integer type which can be safely shared between threads.
This type has the same in-memory representation as the underlying integer type, usize. For more about the differences between atomic types and non-atomic types as well as information about the portability of this type, please see the module-level documentation.
Note: This type is only available on platforms that support atomic loads and stores of usize.
1.0.0 (const: 1.24.0) · source
Creates a new atomic integer.
use std::sync::atomic::AtomicUsize;
let atomic_forty_two = AtomicUsize::new(42);
Returns a mutable reference to the underlying integer.
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
use std::sync::atomic::{AtomicUsize, Ordering};
let mut some_var = AtomicUsize::new(10);
assert_eq!(*some_var.get_mut(), 10);
*some_var.get_mut() = 5;
assert_eq!(some_var.load(Ordering::SeqCst), 5);
🔬 This is a nightly-only experimental API. (atomic_from_mut
#76314)
Get atomic access to a &mut usize
.
Note: This function is only available on targets where usize
has an alignment of 8 bytes.
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicUsize, Ordering};
let mut some_int = 123;
let a = AtomicUsize::from_mut(&mut some_int);
a.store(100, Ordering::Relaxed);
assert_eq!(some_int, 100);
Consumes the atomic and returns the contained value.
This is safe because passing self
by value guarantees that no other threads are concurrently accessing the atomic data.
use std::sync::atomic::AtomicUsize;
let some_var = AtomicUsize::new(5);
assert_eq!(some_var.into_inner(), 5);
Loads a value from the atomic integer.
load
takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Acquire and Relaxed.
Panics if order
is Release or AcqRel.
use std::sync::atomic::{AtomicUsize, Ordering};
let some_var = AtomicUsize::new(5);
assert_eq!(some_var.load(Ordering::Relaxed), 5);
Stores a value into the atomic integer.
store
takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Release and Relaxed.
Panics if order
is Acquire or AcqRel.
use std::sync::atomic::{AtomicUsize, Ordering};
let some_var = AtomicUsize::new(5);
some_var.store(10, Ordering::Relaxed);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
Stores a value into the atomic integer, returning the previous value.
swap
takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that usingAcquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let some_var = AtomicUsize::new(5);
assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
👎 Deprecated since 1.50.0:
Use compare_exchange
or compare_exchange_weak
instead
Stores a value into the atomic integer if the current value is the same as the current
value.
The return value is always the previous value. If it is equal to current
, then the value was updated.
compare_and_swap
also takes an Ordering argument which describes the memory ordering of this operation. Notice that even when using AcqRel, the operation might fail and hence just perform an Acquire
load, but not have Release
semantics. Using Acquire makes the store part of this operation Relaxed if it happens, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations onusize.
Migrating to compare_exchange and compare_exchange_weak
compare_and_swap
is equivalent to compare_exchange
with the following mapping for memory orderings:
Original | Success | Failure |
---|---|---|
Relaxed | Relaxed | Relaxed |
Acquire | Acquire | Acquire |
Release | Release | Relaxed |
AcqRel | AcqRel | Acquire |
SeqCst | SeqCst | SeqCst |
compare_exchange_weak
is allowed to fail spuriously even when the comparison succeeds, which allows the compiler to generate better assembly code when the compare and swap is used in a loop.
use std::sync::atomic::{AtomicUsize, Ordering};
let some_var = AtomicUsize::new(5);
assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
Stores a value into the atomic integer if the current value is the same as the current
value.
The return value is a result indicating whether the new value was written and containing the previous value. On success this value is guaranteed to be equal tocurrent
.
compare_exchange
takes two Ordering arguments to describe the memory ordering of this operation. success
describes the required ordering for the read-modify-write operation that takes place if the comparison with current
succeeds.failure
describes the required ordering for the load operation that takes place when the comparison fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful loadRelaxed. The failure ordering can only be SeqCst, Acquire or Relaxedand must be equivalent to or weaker than the success ordering.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let some_var = AtomicUsize::new(5);
assert_eq!(some_var.compare_exchange(5, 10,
Ordering::Acquire,
Ordering::Relaxed),
Ok(5));
assert_eq!(some_var.load(Ordering::Relaxed), 10);
assert_eq!(some_var.compare_exchange(6, 12,
Ordering::SeqCst,
Ordering::Acquire),
Err(10));
assert_eq!(some_var.load(Ordering::Relaxed), 10);
Stores a value into the atomic integer if the current value is the same as the current
value.
Unlike AtomicUsize::compare_exchange, this function is allowed to spuriously fail even when the comparison succeeds, which can result in more efficient code on some platforms. The return value is a result indicating whether the new value was written and containing the previous value.
compare_exchange_weak
takes two Ordering arguments to describe the memory ordering of this operation. success
describes the required ordering for the read-modify-write operation that takes place if the comparison with current
succeeds.failure
describes the required ordering for the load operation that takes place when the comparison fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful loadRelaxed. The failure ordering can only be SeqCst, Acquire or Relaxedand must be equivalent to or weaker than the success ordering.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let val = AtomicUsize::new(4);
let mut old = val.load(Ordering::Relaxed);
loop {
let new = old * 2;
match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
Ok(_) => break,
Err(x) => old = x,
}
}
Adds to the current value, returning the previous value.
This operation wraps around on overflow.
fetch_add
takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that usingAcquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let foo = AtomicUsize::new(0);
assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
assert_eq!(foo.load(Ordering::SeqCst), 10);
Subtracts from the current value, returning the previous value.
This operation wraps around on overflow.
fetch_sub
takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that usingAcquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let foo = AtomicUsize::new(20);
assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
assert_eq!(foo.load(Ordering::SeqCst), 10);
Bitwise “and” with the current value.
Performs a bitwise “and” operation on the current value and the argument val
, and sets the new value to the result.
Returns the previous value.
fetch_and
takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that usingAcquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let foo = AtomicUsize::new(0b101101);
assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
Bitwise “nand” with the current value.
Performs a bitwise “nand” operation on the current value and the argument val
, and sets the new value to the result.
Returns the previous value.
fetch_nand
takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that usingAcquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let foo = AtomicUsize::new(0x13);
assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
Bitwise “or” with the current value.
Performs a bitwise “or” operation on the current value and the argument val
, and sets the new value to the result.
Returns the previous value.
fetch_or
takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that usingAcquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let foo = AtomicUsize::new(0b101101);
assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
Bitwise “xor” with the current value.
Performs a bitwise “xor” operation on the current value and the argument val
, and sets the new value to the result.
Returns the previous value.
fetch_xor
takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that usingAcquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let foo = AtomicUsize::new(0b101101);
assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
Fetches the value, and applies a function to it that returns an optional new value. Returns a Result
of Ok(previous_value)
if the function returned Some(_)
, elseErr(previous_value)
.
Note: This may call the function multiple times if the value has been changed from other threads in the meantime, as long as the function returns Some(_)
, but the function will have been applied only once to the stored value.
fetch_update
takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering for when the operation finally succeeds while the second describes the required ordering for loads. These correspond to the success and failure orderings ofAtomicUsize::compare_exchangerespectively.
Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the final successful loadRelaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxedand must be equivalent to or weaker than the success ordering.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let x = AtomicUsize::new(7);
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
assert_eq!(x.load(Ordering::SeqCst), 9);
Maximum with the current value.
Finds the maximum of the current value and the argument val
, and sets the new value to the result.
Returns the previous value.
fetch_max
takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that usingAcquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let foo = AtomicUsize::new(23);
assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
assert_eq!(foo.load(Ordering::SeqCst), 42);
If you want to obtain the maximum value in one step, you can use the following:
use std::sync::atomic::{AtomicUsize, Ordering};
let foo = AtomicUsize::new(23);
let bar = 42;
let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
assert!(max_foo == 42);
Minimum with the current value.
Finds the minimum of the current value and the argument val
, and sets the new value to the result.
Returns the previous value.
fetch_min
takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that usingAcquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations onusize.
use std::sync::atomic::{AtomicUsize, Ordering};
let foo = AtomicUsize::new(23);
assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 23);
assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 22);
If you want to obtain the minimum value in one step, you can use the following:
use std::sync::atomic::{AtomicUsize, Ordering};
let foo = AtomicUsize::new(23);
let bar = 12;
let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
assert_eq!(min_foo, 12);
🔬 This is a nightly-only experimental API. (atomic_mut_ptr
#66893)
Returns a mutable pointer to the underlying integer.
Doing non-atomic reads and writes on the resulting integer can be a data race. This method is mostly useful for FFI, where the function signature may use*mut usize
instead of &AtomicUsize
.
Returning an *mut
pointer from a shared reference to this atomic is safe because the atomic types work with interior mutability. All modifications of an atomic change the value through a shared reference, and can do so safely as long as they use atomic operations. Any use of the returned raw pointer requires an unsafe
block and still has to uphold the same restriction: operations on it must be atomic.
use std::sync::atomic::AtomicUsize;
extern "C" {
fn my_atomic_op(arg: *mut usize);
}
let mut atomic = AtomicUsize::new(1);
unsafe {
my_atomic_op(atomic.as_mut_ptr());
}
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
Converts an usize
into an AtomicUsize
.
impl Any for T where
T: 'static + ?Sized,
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
impl From for T
impl<T, U> Into for T where
U: From,
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.