sklearn.manifold.LocallyLinearEmbedding — scikit-learn 0.20.4 documentation (original) (raw)
class sklearn.manifold.
LocallyLinearEmbedding
(n_neighbors=5, n_components=2, reg=0.001, eigen_solver='auto', tol=1e-06, max_iter=100, method='standard', hessian_tol=0.0001, modified_tol=1e-12, neighbors_algorithm='auto', random_state=None, n_jobs=None)[source]¶
Locally Linear Embedding
Read more in the User Guide.
| Parameters: | n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’. max_iter : integer maximum number of iterations for the arpack solver. Not used if eigen_solver==’dense’. method : string (‘standard’, ‘hessian’, ‘modified’ or ‘ltsa’) standard : use the standard locally linear embedding algorithm. see reference [1] hessian : use the Hessian eigenmap method. This method requires n_neighbors > n_components * (1 + (n_components + 1) / 2see reference [2] modified : use the modified locally linear embedding algorithm. see reference [3] ltsa : use local tangent space alignment algorithm see reference [4] hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if method == 'hessian' modified_tol : float, optional Tolerance for modified LLE method. Only used if method == 'modified' neighbors_algorithm : string [‘auto’|’brute’|’kd_tree’|’ball_tree’] algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Used when eigen_solver == ‘arpack’. n_jobs : int or None, optional (default=None) The number of parallel jobs to run.None means 1 unless in a joblib.parallel_backend context.-1 means using all processors. See Glossaryfor more details. | | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Attributes: | embedding_ : array-like, shape [n_samples, n_components] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with embedding_ nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. |
References
[1] | Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000). |
---|
[2] | Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003). |
---|
[3] | Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 |
---|
[4] | Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004) |
---|
Examples
from sklearn.datasets import load_digits from sklearn.manifold import LocallyLinearEmbedding X, _ = load_digits(return_X_y=True) X.shape (1797, 64) embedding = LocallyLinearEmbedding(n_components=2) X_transformed = embedding.fit_transform(X[:100]) X_transformed.shape (100, 2)
Methods
fit(X[, y]) | Compute the embedding vectors for data X |
---|---|
fit_transform(X[, y]) | Compute the embedding vectors for data X and transform X. |
get_params([deep]) | Get parameters for this estimator. |
set_params(**params) | Set the parameters of this estimator. |
transform(X) | Transform new points into embedding space. |
__init__
(n_neighbors=5, n_components=2, reg=0.001, eigen_solver='auto', tol=1e-06, max_iter=100, method='standard', hessian_tol=0.0001, modified_tol=1e-12, neighbors_algorithm='auto', random_state=None, n_jobs=None)[source]¶
Compute the embedding vectors for data X
Parameters: | X : array-like of shape [n_samples, n_features] training set. y : Ignored |
---|---|
Returns: | self : returns an instance of self. |
fit_transform
(X, y=None)[source]¶
Compute the embedding vectors for data X and transform X.
Parameters: | X : array-like of shape [n_samples, n_features] training set. y : Ignored |
---|---|
Returns: | X_new : array-like, shape (n_samples, n_components) |
get_params
(deep=True)[source]¶
Get parameters for this estimator.
Parameters: | deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: | params : mapping of string to any Parameter names mapped to their values. |
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self |
---|
Transform new points into embedding space.
Parameters: | X : array-like, shape = [n_samples, n_features] |
---|---|
Returns: | X_new : array, shape = [n_samples, n_components] |
Notes
Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs)