TransformerMixin (original) (raw)
class sklearn.base.TransformerMixin[source]#
Mixin class for all transformers in scikit-learn.
This mixin defines the following functionality:
- a
fit_transform
method that delegates tofit
andtransform
; - a
set_output
method to outputX
as a specific container type.
If get_feature_names_out is defined, then BaseEstimator will automatically wrap transform
and fit_transform
to follow the set_output
API. See the Developer API for set_output for details.
OneToOneFeatureMixin andClassNamePrefixFeaturesOutMixin are helpful mixins for defining get_feature_names_out.
Examples
import numpy as np from sklearn.base import BaseEstimator, TransformerMixin class MyTransformer(TransformerMixin, BaseEstimator): ... def init(self, *, param=1): ... self.param = param ... def fit(self, X, y=None): ... return self ... def transform(self, X): ... return np.full(shape=len(X), fill_value=self.param) transformer = MyTransformer() X = [[1, 2], [2, 3], [3, 4]] transformer.fit_transform(X) array([1, 1, 1])
fit_transform(X, y=None, **fit_params)[source]#
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit_params
and returns a transformed version of X
.
Parameters:
Xarray-like of shape (n_samples, n_features)
Input samples.
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
**fit_paramsdict
Additional fit parameters.
Returns:
X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
set_output(*, transform=None)[source]#
Set output container.
See Introducing the set_output APIfor an example on how to use the API.
Parameters:
transform{“default”, “pandas”, “polars”}, default=None
Configure output of transform
and fit_transform
.
"default"
: Default output format of a transformer"pandas"
: DataFrame output"polars"
: Polars outputNone
: Transform configuration is unchanged
Added in version 1.4: "polars"
option was added.
Returns:
selfestimator instance
Estimator instance.