KernelCenterer (original) (raw)
class sklearn.preprocessing.KernelCenterer[source]#
Center an arbitrary kernel matrix \(K\).
Let define a kernel \(K\) such that:
\[K(X, Y) = \phi(X) . \phi(Y)^{T}\]
\(\phi(X)\) is a function mapping of rows of \(X\) to a Hilbert space and \(K\) is of shape (n_samples, n_samples)
.
This class allows to compute \(\tilde{K}(X, Y)\) such that:
\[\tilde{K(X, Y)} = \tilde{\phi}(X) . \tilde{\phi}(Y)^{T}\]
\(\tilde{\phi}(X)\) is the centered mapped data in the Hilbert space.
KernelCenterer
centers the features without explicitly computing the mapping \(\phi(\cdot)\). Working with centered kernels is sometime expected when dealing with algebra computation such as eigendecomposition for KernelPCA for instance.
Read more in the User Guide.
Attributes:
**K_fit_rows_**ndarray of shape (n_samples,)
Average of each column of kernel matrix.
**K_fit_all_**float
Average of kernel matrix.
**n_features_in_**int
Number of features seen during fit.
Added in version 0.24.
**feature_names_in_**ndarray of shape (n_features_in_
,)
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Added in version 1.0.
References
Examples
from sklearn.preprocessing import KernelCenterer from sklearn.metrics.pairwise import pairwise_kernels X = [[ 1., -2., 2.], ... [ -2., 1., 3.], ... [ 4., 1., -2.]] K = pairwise_kernels(X, metric='linear') K array([[ 9., 2., -2.], [ 2., 14., -13.], [ -2., -13., 21.]]) transformer = KernelCenterer().fit(K) transformer KernelCenterer() transformer.transform(K) array([[ 5., 0., -5.], [ 0., 14., -14.], [ -5., -14., 19.]])
Fit KernelCenterer.
Parameters:
Kndarray of shape (n_samples, n_samples)
Kernel matrix.
yNone
Ignored.
Returns:
selfobject
Returns the instance itself.
fit_transform(X, y=None, **fit_params)[source]#
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit_params
and returns a transformed version of X
.
Parameters:
Xarray-like of shape (n_samples, n_features)
Input samples.
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
**fit_paramsdict
Additional fit parameters.
Returns:
X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
get_feature_names_out(input_features=None)[source]#
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: ["class_name0", "class_name1", "class_name2"]
.
Parameters:
input_featuresarray-like of str or None, default=None
Only used to validate feature names with the names seen in fit
.
Returns:
feature_names_outndarray of str objects
Transformed feature names.
get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Returns:
routingMetadataRequest
A MetadataRequest encapsulating routing information.
get_params(deep=True)[source]#
Get parameters for this estimator.
Parameters:
deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns:
paramsdict
Parameter names mapped to their values.
set_output(*, transform=None)[source]#
Set output container.
See Introducing the set_output APIfor an example on how to use the API.
Parameters:
transform{“default”, “pandas”, “polars”}, default=None
Configure output of transform
and fit_transform
.
"default"
: Default output format of a transformer"pandas"
: DataFrame output"polars"
: Polars outputNone
: Transform configuration is unchanged
Added in version 1.4: "polars"
option was added.
Returns:
selfestimator instance
Estimator instance.
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Parameters:
**paramsdict
Estimator parameters.
Returns:
selfestimator instance
Estimator instance.
set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') → KernelCenterer[source]#
Request metadata passed to the transform
method.
Note that this method is only relevant ifenable_metadata_routing=True
(see sklearn.set_config). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.
Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside aPipeline. Otherwise it has no effect.
Parameters:
copystr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for copy
parameter in transform
.
Returns:
selfobject
The updated object.
transform(K, copy=True)[source]#
Center kernel matrix.
Parameters:
Kndarray of shape (n_samples1, n_samples2)
Kernel matrix.
copybool, default=True
Set to False to perform inplace computation.
Returns:
K_newndarray of shape (n_samples1, n_samples2)
Returns the instance itself.