LinearSVCSummaryImpl (Spark 3.5.5 JavaDoc) (original) (raw)
Object
- org.apache.spark.ml.classification.LinearSVCSummaryImpl
All Implemented Interfaces:
java.io.Serializable, BinaryClassificationSummary, ClassificationSummary, LinearSVCSummary
Direct Known Subclasses:
LinearSVCTrainingSummaryImpl
public class LinearSVCSummaryImpl
extends Object
implements LinearSVCSummary
LinearSVC results for a given model.
param: predictions dataframe output by the model's transform
method. param: scoreCol field in "predictions" which gives the rawPrediction of each instance. param: predictionCol field in "predictions" which gives the prediction for a data instance as a double. param: labelCol field in "predictions" which gives the true label of each instance. param: weightCol field in "predictions" which gives the weight of each instance.
See Also:
Serialized Form
Constructor Summary
Constructors
Constructor and Description LinearSVCSummaryImpl(Dataset<Row> predictions, String scoreCol, String predictionCol, String labelCol, String weightCol) Method Summary
All Methods Instance Methods Concrete Methods
Modifier and Type Method and Description double areaUnderROC() Computes the area under the receiver operating characteristic (ROC) curve. Dataset<Row> fMeasureByThreshold() Returns a dataframe with two fields (threshold, F-Measure) curve with beta = 1.0. String labelCol() Field in "predictions" which gives the true label of each instance (if available). Dataset<Row> pr() Returns the precision-recall curve, which is a Dataframe containing two fields recall, precision with (0.0, 1.0) prepended to it. Dataset<Row> precisionByThreshold() Returns a dataframe with two fields (threshold, precision) curve. String predictionCol() Field in "predictions" which gives the prediction of each class. Dataset<Row> predictions() Dataframe output by the model's transform method. Dataset<Row> recallByThreshold() Returns a dataframe with two fields (threshold, recall) curve. Dataset<Row> roc() Returns the receiver operating characteristic (ROC) curve, which is a Dataframe having two fields (FPR, TPR) with (0.0, 0.0) prepended and (1.0, 1.0) appended to it. String scoreCol() Field in "predictions" which gives the probability or rawPrediction of each class as a vector. String weightCol() Field in "predictions" which gives the weight of each instance. * ### Methods inherited from class Object `equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait` * ### Methods inherited from interface org.apache.spark.ml.classification.[ClassificationSummary](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html "interface in org.apache.spark.ml.classification") `[accuracy](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#accuracy--), [falsePositiveRateByLabel](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#falsePositiveRateByLabel--), [fMeasureByLabel](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#fMeasureByLabel--), [fMeasureByLabel](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#fMeasureByLabel-double-), [labels](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#labels--), [precisionByLabel](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#precisionByLabel--), [recallByLabel](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#recallByLabel--), [truePositiveRateByLabel](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#truePositiveRateByLabel--), [weightedFalsePositiveRate](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#weightedFalsePositiveRate--), [weightedFMeasure](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#weightedFMeasure--), [weightedFMeasure](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#weightedFMeasure-double-), [weightedPrecision](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#weightedPrecision--), [weightedRecall](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#weightedRecall--), [weightedTruePositiveRate](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#weightedTruePositiveRate--)`
Constructor Detail
* #### LinearSVCSummaryImpl public LinearSVCSummaryImpl([Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<[Row](../../../../../org/apache/spark/sql/Row.html "interface in org.apache.spark.sql")> predictions, String scoreCol, String predictionCol, String labelCol, String weightCol)
Method Detail
* #### areaUnderROC public double areaUnderROC() Computes the area under the receiver operating characteristic (ROC) curve. Specified by: `[areaUnderROC](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html#areaUnderROC--)` in interface `[BinaryClassificationSummary](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html "interface in org.apache.spark.ml.classification")` Returns: (undocumented) * #### fMeasureByThreshold public [Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<[Row](../../../../../org/apache/spark/sql/Row.html "interface in org.apache.spark.sql")> fMeasureByThreshold() Returns a dataframe with two fields (threshold, F-Measure) curve with beta = 1.0. Specified by: `[fMeasureByThreshold](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html#fMeasureByThreshold--)` in interface `[BinaryClassificationSummary](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html "interface in org.apache.spark.ml.classification")` Returns: (undocumented) * #### labelCol public String labelCol() Field in "predictions" which gives the true label of each instance (if available). Specified by: `[labelCol](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#labelCol--)` in interface `[ClassificationSummary](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html "interface in org.apache.spark.ml.classification")` * #### pr public [Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<[Row](../../../../../org/apache/spark/sql/Row.html "interface in org.apache.spark.sql")> pr() Returns the precision-recall curve, which is a Dataframe containing two fields recall, precision with (0.0, 1.0) prepended to it. Specified by: `[pr](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html#pr--)` in interface `[BinaryClassificationSummary](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html "interface in org.apache.spark.ml.classification")` Returns: (undocumented) * #### precisionByThreshold public [Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<[Row](../../../../../org/apache/spark/sql/Row.html "interface in org.apache.spark.sql")> precisionByThreshold() Returns a dataframe with two fields (threshold, precision) curve. Every possible probability obtained in transforming the dataset are used as thresholds used in calculating the precision. Specified by: `[precisionByThreshold](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html#precisionByThreshold--)` in interface `[BinaryClassificationSummary](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html "interface in org.apache.spark.ml.classification")` Returns: (undocumented) * #### predictionCol public String predictionCol() Field in "predictions" which gives the prediction of each class. Specified by: `[predictionCol](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#predictionCol--)` in interface `[ClassificationSummary](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html "interface in org.apache.spark.ml.classification")` * #### predictions public [Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<[Row](../../../../../org/apache/spark/sql/Row.html "interface in org.apache.spark.sql")> predictions() Dataframe output by the model's `transform` method. Specified by: `[predictions](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#predictions--)` in interface `[ClassificationSummary](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html "interface in org.apache.spark.ml.classification")` Returns: (undocumented) * #### recallByThreshold public [Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<[Row](../../../../../org/apache/spark/sql/Row.html "interface in org.apache.spark.sql")> recallByThreshold() Returns a dataframe with two fields (threshold, recall) curve. Every possible probability obtained in transforming the dataset are used as thresholds used in calculating the recall. Specified by: `[recallByThreshold](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html#recallByThreshold--)` in interface `[BinaryClassificationSummary](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html "interface in org.apache.spark.ml.classification")` Returns: (undocumented) * #### roc public [Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<[Row](../../../../../org/apache/spark/sql/Row.html "interface in org.apache.spark.sql")> roc() Returns the receiver operating characteristic (ROC) curve, which is a Dataframe having two fields (FPR, TPR) with (0.0, 0.0) prepended and (1.0, 1.0) appended to it. See http://en.wikipedia.org/wiki/Receiver\_operating\_characteristic Specified by: `[roc](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html#roc--)` in interface `[BinaryClassificationSummary](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html "interface in org.apache.spark.ml.classification")` Returns: (undocumented) * #### scoreCol public String scoreCol() Field in "predictions" which gives the probability or rawPrediction of each class as a vector. Specified by: `[scoreCol](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html#scoreCol--)` in interface `[BinaryClassificationSummary](../../../../../org/apache/spark/ml/classification/BinaryClassificationSummary.html "interface in org.apache.spark.ml.classification")` Returns: (undocumented) * #### weightCol public String weightCol() Field in "predictions" which gives the weight of each instance. Specified by: `[weightCol](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html#weightCol--)` in interface `[ClassificationSummary](../../../../../org/apache/spark/ml/classification/ClassificationSummary.html "interface in org.apache.spark.ml.classification")`