AFTSurvivalRegression (Spark 3.5.5 JavaDoc) (original) (raw)
Object
- org.apache.spark.ml.PipelineStage
- org.apache.spark.ml.Estimator
- org.apache.spark.ml.Predictor<FeaturesType,Learner,M>
* * org.apache.spark.ml.regression.Regressor<Vector,AFTSurvivalRegression,AFTSurvivalRegressionModel>
* * org.apache.spark.ml.regression.AFTSurvivalRegression
- org.apache.spark.ml.Predictor<FeaturesType,Learner,M>
- org.apache.spark.ml.Estimator
All Implemented Interfaces:
java.io.Serializable, org.apache.spark.internal.Logging, Params, HasAggregationDepth, HasFeaturesCol, HasFitIntercept, HasLabelCol, HasMaxBlockSizeInMB, HasMaxIter, HasPredictionCol, HasTol, PredictorParams, AFTSurvivalRegressionParams, DefaultParamsWritable, Identifiable, MLWritable
public class AFTSurvivalRegression
extends Regressor<Vector,AFTSurvivalRegression,AFTSurvivalRegressionModel>
implements AFTSurvivalRegressionParams, DefaultParamsWritable, org.apache.spark.internal.Logging
Fit a parametric survival regression model named accelerated failure time (AFT) model (see Accelerated failure time model (Wikipedia)) based on the Weibull distribution of the survival time.
Since 3.1.0, it supports stacking instances into blocks and using GEMV for better performance. The block size will be 1.0 MB, if param maxBlockSizeInMB is set 0.0 by default.
See Also:
Serialized Form
Nested Class Summary
* ### Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging `org.apache.spark.internal.Logging.SparkShellLoggingFilter`
Constructor Summary
Constructors
Constructor and Description AFTSurvivalRegression() AFTSurvivalRegression(String uid) Method Summary
All Methods Static Methods Instance Methods Concrete Methods
Modifier and Type Method and Description IntParam aggregationDepth() Param for suggested depth for treeAggregate (>= 2). Param censorCol() Param for censor column name. AFTSurvivalRegression copy(ParamMap extra) Creates a copy of this instance with the same UID and some extra params. BooleanParam fitIntercept() Param for whether to fit an intercept term. static AFTSurvivalRegression load(String path) DoubleParam maxBlockSizeInMB() Param for Maximum memory in MB for stacking input data into blocks. IntParam maxIter() Param for maximum number of iterations (>= 0). DoubleArrayParam quantileProbabilities() Param for quantile probabilities array. Param quantilesCol() Param for quantiles column name. static MLReader read() AFTSurvivalRegression setAggregationDepth(int value) Suggested depth for treeAggregate (greater than or equal to 2). AFTSurvivalRegression setCensorCol(String value) AFTSurvivalRegression setFitIntercept(boolean value) Set if we should fit the intercept Default is true. AFTSurvivalRegression setMaxBlockSizeInMB(double value) Sets the value of param maxBlockSizeInMB. AFTSurvivalRegression setMaxIter(int value) Set the maximum number of iterations. AFTSurvivalRegression setQuantileProbabilities(double[] value) AFTSurvivalRegression setQuantilesCol(String value) AFTSurvivalRegression setTol(double value) Set the convergence tolerance of iterations. DoubleParam tol() Param for the convergence tolerance for iterative algorithms (>= 0). StructType transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema. String uid() An immutable unique ID for the object and its derivatives. * ### Methods inherited from class org.apache.spark.ml.[Predictor](../../../../../org/apache/spark/ml/Predictor.html "class in org.apache.spark.ml") `[featuresCol](../../../../../org/apache/spark/ml/Predictor.html#featuresCol--), [fit](../../../../../org/apache/spark/ml/Predictor.html#fit-org.apache.spark.sql.Dataset-), [labelCol](../../../../../org/apache/spark/ml/Predictor.html#labelCol--), [predictionCol](../../../../../org/apache/spark/ml/Predictor.html#predictionCol--), [setFeaturesCol](../../../../../org/apache/spark/ml/Predictor.html#setFeaturesCol-java.lang.String-), [setLabelCol](../../../../../org/apache/spark/ml/Predictor.html#setLabelCol-java.lang.String-), [setPredictionCol](../../../../../org/apache/spark/ml/Predictor.html#setPredictionCol-java.lang.String-)` * ### Methods inherited from class org.apache.spark.ml.[Estimator](../../../../../org/apache/spark/ml/Estimator.html "class in org.apache.spark.ml") `[fit](../../../../../org/apache/spark/ml/Estimator.html#fit-org.apache.spark.sql.Dataset-org.apache.spark.ml.param.ParamMap-), [fit](../../../../../org/apache/spark/ml/Estimator.html#fit-org.apache.spark.sql.Dataset-org.apache.spark.ml.param.ParamPair-org.apache.spark.ml.param.ParamPair...-), [fit](../../../../../org/apache/spark/ml/Estimator.html#fit-org.apache.spark.sql.Dataset-org.apache.spark.ml.param.ParamPair-scala.collection.Seq-), [fit](../../../../../org/apache/spark/ml/Estimator.html#fit-org.apache.spark.sql.Dataset-scala.collection.Seq-)` * ### Methods inherited from class org.apache.spark.ml.[PipelineStage](../../../../../org/apache/spark/ml/PipelineStage.html "class in org.apache.spark.ml") `[params](../../../../../org/apache/spark/ml/PipelineStage.html#params--)` * ### Methods inherited from class Object `equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait` * ### Methods inherited from interface org.apache.spark.ml.regression.[AFTSurvivalRegressionParams](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html "interface in org.apache.spark.ml.regression") `[getCensorCol](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html#getCensorCol--), [getQuantileProbabilities](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html#getQuantileProbabilities--), [getQuantilesCol](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html#getQuantilesCol--), [hasQuantilesCol](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html#hasQuantilesCol--), [validateAndTransformSchema](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html#validateAndTransformSchema-org.apache.spark.sql.types.StructType-boolean-)` * ### Methods inherited from interface org.apache.spark.ml.[PredictorParams](../../../../../org/apache/spark/ml/PredictorParams.html "interface in org.apache.spark.ml") `[validateAndTransformSchema](../../../../../org/apache/spark/ml/PredictorParams.html#validateAndTransformSchema-org.apache.spark.sql.types.StructType-boolean-org.apache.spark.sql.types.DataType-)` * ### Methods inherited from interface org.apache.spark.ml.param.shared.[HasLabelCol](../../../../../org/apache/spark/ml/param/shared/HasLabelCol.html "interface in org.apache.spark.ml.param.shared") `[getLabelCol](../../../../../org/apache/spark/ml/param/shared/HasLabelCol.html#getLabelCol--), [labelCol](../../../../../org/apache/spark/ml/param/shared/HasLabelCol.html#labelCol--)` * ### Methods inherited from interface org.apache.spark.ml.param.shared.[HasFeaturesCol](../../../../../org/apache/spark/ml/param/shared/HasFeaturesCol.html "interface in org.apache.spark.ml.param.shared") `[featuresCol](../../../../../org/apache/spark/ml/param/shared/HasFeaturesCol.html#featuresCol--), [getFeaturesCol](../../../../../org/apache/spark/ml/param/shared/HasFeaturesCol.html#getFeaturesCol--)` * ### Methods inherited from interface org.apache.spark.ml.param.shared.[HasPredictionCol](../../../../../org/apache/spark/ml/param/shared/HasPredictionCol.html "interface in org.apache.spark.ml.param.shared") `[getPredictionCol](../../../../../org/apache/spark/ml/param/shared/HasPredictionCol.html#getPredictionCol--), [predictionCol](../../../../../org/apache/spark/ml/param/shared/HasPredictionCol.html#predictionCol--)` * ### Methods inherited from interface org.apache.spark.ml.param.[Params](../../../../../org/apache/spark/ml/param/Params.html "interface in org.apache.spark.ml.param") `[clear](../../../../../org/apache/spark/ml/param/Params.html#clear-org.apache.spark.ml.param.Param-), [copyValues](../../../../../org/apache/spark/ml/param/Params.html#copyValues-T-org.apache.spark.ml.param.ParamMap-), [defaultCopy](../../../../../org/apache/spark/ml/param/Params.html#defaultCopy-org.apache.spark.ml.param.ParamMap-), [defaultParamMap](../../../../../org/apache/spark/ml/param/Params.html#defaultParamMap--), [explainParam](../../../../../org/apache/spark/ml/param/Params.html#explainParam-org.apache.spark.ml.param.Param-), [explainParams](../../../../../org/apache/spark/ml/param/Params.html#explainParams--), [extractParamMap](../../../../../org/apache/spark/ml/param/Params.html#extractParamMap--), [extractParamMap](../../../../../org/apache/spark/ml/param/Params.html#extractParamMap-org.apache.spark.ml.param.ParamMap-), [get](../../../../../org/apache/spark/ml/param/Params.html#get-org.apache.spark.ml.param.Param-), [getDefault](../../../../../org/apache/spark/ml/param/Params.html#getDefault-org.apache.spark.ml.param.Param-), [getOrDefault](../../../../../org/apache/spark/ml/param/Params.html#getOrDefault-org.apache.spark.ml.param.Param-), [getParam](../../../../../org/apache/spark/ml/param/Params.html#getParam-java.lang.String-), [hasDefault](../../../../../org/apache/spark/ml/param/Params.html#hasDefault-org.apache.spark.ml.param.Param-), [hasParam](../../../../../org/apache/spark/ml/param/Params.html#hasParam-java.lang.String-), [isDefined](../../../../../org/apache/spark/ml/param/Params.html#isDefined-org.apache.spark.ml.param.Param-), [isSet](../../../../../org/apache/spark/ml/param/Params.html#isSet-org.apache.spark.ml.param.Param-), [onParamChange](../../../../../org/apache/spark/ml/param/Params.html#onParamChange-org.apache.spark.ml.param.Param-), [paramMap](../../../../../org/apache/spark/ml/param/Params.html#paramMap--), [params](../../../../../org/apache/spark/ml/param/Params.html#params--), [set](../../../../../org/apache/spark/ml/param/Params.html#set-org.apache.spark.ml.param.Param-T-), [set](../../../../../org/apache/spark/ml/param/Params.html#set-org.apache.spark.ml.param.ParamPair-), [set](../../../../../org/apache/spark/ml/param/Params.html#set-java.lang.String-java.lang.Object-), [setDefault](../../../../../org/apache/spark/ml/param/Params.html#setDefault-org.apache.spark.ml.param.Param-T-), [setDefault](../../../../../org/apache/spark/ml/param/Params.html#setDefault-scala.collection.Seq-), [shouldOwn](../../../../../org/apache/spark/ml/param/Params.html#shouldOwn-org.apache.spark.ml.param.Param-)` * ### Methods inherited from interface org.apache.spark.ml.util.[Identifiable](../../../../../org/apache/spark/ml/util/Identifiable.html "interface in org.apache.spark.ml.util") `[toString](../../../../../org/apache/spark/ml/util/Identifiable.html#toString--)` * ### Methods inherited from interface org.apache.spark.ml.param.shared.[HasMaxIter](../../../../../org/apache/spark/ml/param/shared/HasMaxIter.html "interface in org.apache.spark.ml.param.shared") `[getMaxIter](../../../../../org/apache/spark/ml/param/shared/HasMaxIter.html#getMaxIter--)` * ### Methods inherited from interface org.apache.spark.ml.param.shared.[HasTol](../../../../../org/apache/spark/ml/param/shared/HasTol.html "interface in org.apache.spark.ml.param.shared") `[getTol](../../../../../org/apache/spark/ml/param/shared/HasTol.html#getTol--)` * ### Methods inherited from interface org.apache.spark.ml.param.shared.[HasFitIntercept](../../../../../org/apache/spark/ml/param/shared/HasFitIntercept.html "interface in org.apache.spark.ml.param.shared") `[getFitIntercept](../../../../../org/apache/spark/ml/param/shared/HasFitIntercept.html#getFitIntercept--)` * ### Methods inherited from interface org.apache.spark.ml.param.shared.[HasAggregationDepth](../../../../../org/apache/spark/ml/param/shared/HasAggregationDepth.html "interface in org.apache.spark.ml.param.shared") `[getAggregationDepth](../../../../../org/apache/spark/ml/param/shared/HasAggregationDepth.html#getAggregationDepth--)` * ### Methods inherited from interface org.apache.spark.ml.param.shared.[HasMaxBlockSizeInMB](../../../../../org/apache/spark/ml/param/shared/HasMaxBlockSizeInMB.html "interface in org.apache.spark.ml.param.shared") `[getMaxBlockSizeInMB](../../../../../org/apache/spark/ml/param/shared/HasMaxBlockSizeInMB.html#getMaxBlockSizeInMB--)` * ### Methods inherited from interface org.apache.spark.internal.Logging `$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize` * ### Methods inherited from interface org.apache.spark.ml.util.[DefaultParamsWritable](../../../../../org/apache/spark/ml/util/DefaultParamsWritable.html "interface in org.apache.spark.ml.util") `[write](../../../../../org/apache/spark/ml/util/DefaultParamsWritable.html#write--)` * ### Methods inherited from interface org.apache.spark.ml.util.[MLWritable](../../../../../org/apache/spark/ml/util/MLWritable.html "interface in org.apache.spark.ml.util") `[save](../../../../../org/apache/spark/ml/util/MLWritable.html#save-java.lang.String-)`
Constructor Detail
* #### AFTSurvivalRegression public AFTSurvivalRegression(String uid) * #### AFTSurvivalRegression public AFTSurvivalRegression()
Method Detail
* #### load public static [AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression") load(String path) * #### read public static [MLReader](../../../../../org/apache/spark/ml/util/MLReader.html "class in org.apache.spark.ml.util")<T> read() * #### censorCol public final [Param](../../../../../org/apache/spark/ml/param/Param.html "class in org.apache.spark.ml.param")<String> censorCol() Param for censor column name. The value of this column could be 0 or 1\. If the value is 1, it means the event has occurred i.e. uncensored; otherwise censored. Specified by: `[censorCol](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html#censorCol--)` in interface `[AFTSurvivalRegressionParams](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html "interface in org.apache.spark.ml.regression")` Returns: (undocumented) * #### quantileProbabilities public final [DoubleArrayParam](../../../../../org/apache/spark/ml/param/DoubleArrayParam.html "class in org.apache.spark.ml.param") quantileProbabilities() Param for quantile probabilities array. Values of the quantile probabilities array should be in the range (0, 1) and the array should be non-empty. Specified by: `[quantileProbabilities](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html#quantileProbabilities--)` in interface `[AFTSurvivalRegressionParams](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html "interface in org.apache.spark.ml.regression")` Returns: (undocumented) * #### quantilesCol public final [Param](../../../../../org/apache/spark/ml/param/Param.html "class in org.apache.spark.ml.param")<String> quantilesCol() Param for quantiles column name. This column will output quantiles of corresponding quantileProbabilities if it is set. Specified by: `[quantilesCol](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html#quantilesCol--)` in interface `[AFTSurvivalRegressionParams](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionParams.html "interface in org.apache.spark.ml.regression")` Returns: (undocumented) * #### maxBlockSizeInMB public final [DoubleParam](../../../../../org/apache/spark/ml/param/DoubleParam.html "class in org.apache.spark.ml.param") maxBlockSizeInMB() Param for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0.. Specified by: `[maxBlockSizeInMB](../../../../../org/apache/spark/ml/param/shared/HasMaxBlockSizeInMB.html#maxBlockSizeInMB--)` in interface `[HasMaxBlockSizeInMB](../../../../../org/apache/spark/ml/param/shared/HasMaxBlockSizeInMB.html "interface in org.apache.spark.ml.param.shared")` Returns: (undocumented) * #### aggregationDepth public final [IntParam](../../../../../org/apache/spark/ml/param/IntParam.html "class in org.apache.spark.ml.param") aggregationDepth() Param for suggested depth for treeAggregate (>= 2). Specified by: `[aggregationDepth](../../../../../org/apache/spark/ml/param/shared/HasAggregationDepth.html#aggregationDepth--)` in interface `[HasAggregationDepth](../../../../../org/apache/spark/ml/param/shared/HasAggregationDepth.html "interface in org.apache.spark.ml.param.shared")` Returns: (undocumented) * #### fitIntercept public final [BooleanParam](../../../../../org/apache/spark/ml/param/BooleanParam.html "class in org.apache.spark.ml.param") fitIntercept() Param for whether to fit an intercept term. Specified by: `[fitIntercept](../../../../../org/apache/spark/ml/param/shared/HasFitIntercept.html#fitIntercept--)` in interface `[HasFitIntercept](../../../../../org/apache/spark/ml/param/shared/HasFitIntercept.html "interface in org.apache.spark.ml.param.shared")` Returns: (undocumented) * #### tol public final [DoubleParam](../../../../../org/apache/spark/ml/param/DoubleParam.html "class in org.apache.spark.ml.param") tol() Description copied from interface: `[HasTol](../../../../../org/apache/spark/ml/param/shared/HasTol.html#tol--)` Param for the convergence tolerance for iterative algorithms (>= 0). Specified by: `[tol](../../../../../org/apache/spark/ml/param/shared/HasTol.html#tol--)` in interface `[HasTol](../../../../../org/apache/spark/ml/param/shared/HasTol.html "interface in org.apache.spark.ml.param.shared")` Returns: (undocumented) * #### maxIter public final [IntParam](../../../../../org/apache/spark/ml/param/IntParam.html "class in org.apache.spark.ml.param") maxIter() Description copied from interface: `[HasMaxIter](../../../../../org/apache/spark/ml/param/shared/HasMaxIter.html#maxIter--)` Param for maximum number of iterations (>= 0). Specified by: `[maxIter](../../../../../org/apache/spark/ml/param/shared/HasMaxIter.html#maxIter--)` in interface `[HasMaxIter](../../../../../org/apache/spark/ml/param/shared/HasMaxIter.html "interface in org.apache.spark.ml.param.shared")` Returns: (undocumented) * #### uid public String uid() An immutable unique ID for the object and its derivatives. Specified by: `[uid](../../../../../org/apache/spark/ml/util/Identifiable.html#uid--)` in interface `[Identifiable](../../../../../org/apache/spark/ml/util/Identifiable.html "interface in org.apache.spark.ml.util")` Returns: (undocumented) * #### setCensorCol public [AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression") setCensorCol(String value) * #### setQuantileProbabilities public [AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression") setQuantileProbabilities(double[] value) * #### setQuantilesCol public [AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression") setQuantilesCol(String value) * #### setFitIntercept public [AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression") setFitIntercept(boolean value) Set if we should fit the intercept Default is true. Parameters: `value` \- (undocumented) Returns: (undocumented) * #### setMaxIter public [AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression") setMaxIter(int value) Set the maximum number of iterations. Default is 100. Parameters: `value` \- (undocumented) Returns: (undocumented) * #### setTol public [AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression") setTol(double value) Set the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-6. Parameters: `value` \- (undocumented) Returns: (undocumented) * #### setAggregationDepth public [AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression") setAggregationDepth(int value) Suggested depth for treeAggregate (greater than or equal to 2). If the dimensions of features or the number of partitions are large, this param could be adjusted to a larger size. Default is 2. Parameters: `value` \- (undocumented) Returns: (undocumented) * #### setMaxBlockSizeInMB public [AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression") setMaxBlockSizeInMB(double value) Sets the value of param `maxBlockSizeInMB`. Default is 0.0, then 1.0 MB will be chosen. Parameters: `value` \- (undocumented) Returns: (undocumented) * #### transformSchema public [StructType](../../../../../org/apache/spark/sql/types/StructType.html "class in org.apache.spark.sql.types") transformSchema([StructType](../../../../../org/apache/spark/sql/types/StructType.html "class in org.apache.spark.sql.types") schema) Check transform validity and derive the output schema from the input schema. We check validity for interactions between parameters during `transformSchema` and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by `Param.validate()`. Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. Overrides: `[transformSchema](../../../../../org/apache/spark/ml/Predictor.html#transformSchema-org.apache.spark.sql.types.StructType-)` in class `[Predictor](../../../../../org/apache/spark/ml/Predictor.html "class in org.apache.spark.ml")<[Vector](../../../../../org/apache/spark/ml/linalg/Vector.html "interface in org.apache.spark.ml.linalg"),[AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression"),[AFTSurvivalRegressionModel](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionModel.html "class in org.apache.spark.ml.regression")>` Parameters: `schema` \- (undocumented) Returns: (undocumented) * #### copy public [AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression") copy([ParamMap](../../../../../org/apache/spark/ml/param/ParamMap.html "class in org.apache.spark.ml.param") extra) Description copied from interface: `[Params](../../../../../org/apache/spark/ml/param/Params.html#copy-org.apache.spark.ml.param.ParamMap-)` Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See `defaultCopy()`. Specified by: `[copy](../../../../../org/apache/spark/ml/param/Params.html#copy-org.apache.spark.ml.param.ParamMap-)` in interface `[Params](../../../../../org/apache/spark/ml/param/Params.html "interface in org.apache.spark.ml.param")` Specified by: `[copy](../../../../../org/apache/spark/ml/Predictor.html#copy-org.apache.spark.ml.param.ParamMap-)` in class `[Predictor](../../../../../org/apache/spark/ml/Predictor.html "class in org.apache.spark.ml")<[Vector](../../../../../org/apache/spark/ml/linalg/Vector.html "interface in org.apache.spark.ml.linalg"),[AFTSurvivalRegression](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegression.html "class in org.apache.spark.ml.regression"),[AFTSurvivalRegressionModel](../../../../../org/apache/spark/ml/regression/AFTSurvivalRegressionModel.html "class in org.apache.spark.ml.regression")>` Parameters: `extra` \- (undocumented) Returns: (undocumented)