RegressionModel (Spark 3.5.5 JavaDoc) (original) (raw)
- All Superinterfaces:
java.io.Serializable
All Known Implementing Classes:
LassoModel, LinearRegressionModel, RidgeRegressionModel
public interface RegressionModel
extends scala.Serializable
Method Summary
All Methods Instance Methods Abstract Methods
Modifier and Type Method and Description JavaRDD predict(JavaRDD<Vector> testData) Predict values for examples stored in a JavaRDD. RDD predict(RDD<Vector> testData) Predict values for the given data set using the model trained. double predict(Vector testData) Predict values for a single data point using the model trained. Method Detail
* #### predict [RDD](../../../../../org/apache/spark/rdd/RDD.html "class in org.apache.spark.rdd")<Object> predict([RDD](../../../../../org/apache/spark/rdd/RDD.html "class in org.apache.spark.rdd")<[Vector](../../../../../org/apache/spark/mllib/linalg/Vector.html "interface in org.apache.spark.mllib.linalg")> testData) Predict values for the given data set using the model trained. Parameters: `testData` \- RDD representing data points to be predicted Returns: RDD\[Double\] where each entry contains the corresponding prediction * #### predict double predict([Vector](../../../../../org/apache/spark/mllib/linalg/Vector.html "interface in org.apache.spark.mllib.linalg") testData) Predict values for a single data point using the model trained. Parameters: `testData` \- array representing a single data point Returns: Double prediction from the trained model * #### predict [JavaRDD](../../../../../org/apache/spark/api/java/JavaRDD.html "class in org.apache.spark.api.java")<Double> predict([JavaRDD](../../../../../org/apache/spark/api/java/JavaRDD.html "class in org.apache.spark.api.java")<[Vector](../../../../../org/apache/spark/mllib/linalg/Vector.html "interface in org.apache.spark.mllib.linalg")> testData) Predict values for examples stored in a JavaRDD. Parameters: `testData` \- JavaRDD representing data points to be predicted Returns: a JavaRDD\[java.lang.Double\] where each entry contains the corresponding prediction