Spark 3.5.5 ScalaDoc - org.apache.spark.ml.tuning.TrainValidationSplit (original) (raw)
class TrainValidationSplit extends Estimator[TrainValidationSplitModel] with TrainValidationSplitParams with HasParallelism with HasCollectSubModels with MLWritable with Logging
Ordering
- Grouped
- Alphabetic
- By Inheritance
Inherited
TrainValidationSplit
MLWritable
HasCollectSubModels
HasParallelism
TrainValidationSplitParams
ValidatorParams
HasSeed
Estimator
PipelineStage
Logging
Params
Serializable
Serializable
Identifiable
AnyRef
Any
Hide All
Show All
Instance Constructors
Value Members
- final def !=(arg0: Any): Boolean
- final def ##(): Int
- final def $[T](param: Param[T]): T
- final def ==(arg0: Any): Boolean
- final def asInstanceOf[T0]: T0
- final def clear(param: Param[_]): TrainValidationSplit.this.type
- def clone(): AnyRef
- final val collectSubModels: BooleanParam
- def copy(extra: ParamMap): TrainValidationSplit
- def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
- final def defaultCopy[T <: Params](extra: ParamMap): T
- final def eq(arg0: AnyRef): Boolean
- def equals(arg0: Any): Boolean
- val estimator: Param[Estimator[_]]
- val estimatorParamMaps: Param[Array[ParamMap]]
- val evaluator: Param[Evaluator]
- def explainParam(param: Param[_]): String
- def explainParams(): String
- final def extractParamMap(): ParamMap
- final def extractParamMap(extra: ParamMap): ParamMap
- def finalize(): Unit
- def fit(dataset: Dataset[_]): TrainValidationSplitModel
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[TrainValidationSplitModel]
- def fit(dataset: Dataset[_], paramMap: ParamMap): TrainValidationSplitModel
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): TrainValidationSplitModel
- final def get[T](param: Param[T]): Option[T]
- final def getClass(): Class[_]
- final def getCollectSubModels: Boolean
- final def getDefault[T](param: Param[T]): Option[T]
- def getEstimator: Estimator[_]
- def getEstimatorParamMaps: Array[ParamMap]
- def getEvaluator: Evaluator
- final def getOrDefault[T](param: Param[T]): T
- def getParallelism: Int
- def getParam(paramName: String): Param[Any]
- final def getSeed: Long
- def getTrainRatio: Double
- final def hasDefault[T](param: Param[T]): Boolean
- def hasParam(paramName: String): Boolean
- def hashCode(): Int
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- final def isDefined(param: Param[_]): Boolean
- final def isInstanceOf[T0]: Boolean
- final def isSet(param: Param[_]): Boolean
- def isTraceEnabled(): Boolean
- def log: Logger
- def logDebug(msg: ⇒ String, throwable: Throwable): Unit
- def logDebug(msg: ⇒ String): Unit
- def logError(msg: ⇒ String, throwable: Throwable): Unit
- def logError(msg: ⇒ String): Unit
- def logInfo(msg: ⇒ String, throwable: Throwable): Unit
- def logInfo(msg: ⇒ String): Unit
- def logName: String
- def logTrace(msg: ⇒ String, throwable: Throwable): Unit
- def logTrace(msg: ⇒ String): Unit
- def logTuningParams(instrumentation: Instrumentation): Unit
- def logWarning(msg: ⇒ String, throwable: Throwable): Unit
- def logWarning(msg: ⇒ String): Unit
- final def ne(arg0: AnyRef): Boolean
- final def notify(): Unit
- final def notifyAll(): Unit
- val parallelism: IntParam
- lazy val params: Array[Param[_]]
- def save(path: String): Unit
- final val seed: LongParam
- final def set(paramPair: ParamPair[_]): TrainValidationSplit.this.type
- final def set(param: String, value: Any): TrainValidationSplit.this.type
- final def set[T](param: Param[T], value: T): TrainValidationSplit.this.type
- def setCollectSubModels(value: Boolean): TrainValidationSplit.this.type
- final def setDefault(paramPairs: ParamPair[_]*): TrainValidationSplit.this.type
- final def setDefault[T](param: Param[T], value: T): TrainValidationSplit.this.type
- def setEstimator(value: Estimator[_]): TrainValidationSplit.this.type
- def setEstimatorParamMaps(value: Array[ParamMap]): TrainValidationSplit.this.type
- def setEvaluator(value: Evaluator): TrainValidationSplit.this.type
- def setParallelism(value: Int): TrainValidationSplit.this.type
- def setSeed(value: Long): TrainValidationSplit.this.type
- def setTrainRatio(value: Double): TrainValidationSplit.this.type
- final def synchronized[T0](arg0: ⇒ T0): T0
- def toString(): String
- val trainRatio: DoubleParam
- def transformSchema(schema: StructType): StructType
- def transformSchema(schema: StructType, logging: Boolean): StructType
- def transformSchemaImpl(schema: StructType): StructType
- val uid: String
- final def wait(): Unit
- final def wait(arg0: Long, arg1: Int): Unit
- final def wait(arg0: Long): Unit
- def write: MLWriter