Spark 3.5.5 ScalaDoc - org.apache.spark.ml.tuning.TrainValidationSplit (original) (raw)

class TrainValidationSplit extends Estimator[TrainValidationSplitModel] with TrainValidationSplitParams with HasParallelism with HasCollectSubModels with MLWritable with Logging

Ordering

  1. Grouped
  2. Alphabetic
  3. By Inheritance

Inherited

  1. TrainValidationSplit

  2. MLWritable

  3. HasCollectSubModels

  4. HasParallelism

  5. TrainValidationSplitParams

  6. ValidatorParams

  7. HasSeed

  8. Estimator

  9. PipelineStage

  10. Logging

  11. Params

  12. Serializable

  13. Serializable

  14. Identifiable

  15. AnyRef

  16. Any

  17. Hide All

  18. Show All

Instance Constructors

  1. new TrainValidationSplit()
  2. new TrainValidationSplit(uid: String)

Value Members

  1. final def !=(arg0: Any): Boolean
  2. final def ##(): Int
  3. final def $[T](param: Param[T]): T
  4. final def ==(arg0: Any): Boolean
  5. final def asInstanceOf[T0]: T0
  6. final def clear(param: Param[_]): TrainValidationSplit.this.type
  7. def clone(): AnyRef
  8. final val collectSubModels: BooleanParam
  9. def copy(extra: ParamMap): TrainValidationSplit
  10. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
  11. final def defaultCopy[T <: Params](extra: ParamMap): T
  12. final def eq(arg0: AnyRef): Boolean
  13. def equals(arg0: Any): Boolean
  14. val estimator: Param[Estimator[_]]
  15. val estimatorParamMaps: Param[Array[ParamMap]]
  16. val evaluator: Param[Evaluator]
  17. def explainParam(param: Param[_]): String
  18. def explainParams(): String
  19. final def extractParamMap(): ParamMap
  20. final def extractParamMap(extra: ParamMap): ParamMap
  21. def finalize(): Unit
  22. def fit(dataset: Dataset[_]): TrainValidationSplitModel
  23. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[TrainValidationSplitModel]
  24. def fit(dataset: Dataset[_], paramMap: ParamMap): TrainValidationSplitModel
  25. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): TrainValidationSplitModel
  26. final def get[T](param: Param[T]): Option[T]
  27. final def getClass(): Class[_]
  28. final def getCollectSubModels: Boolean
  29. final def getDefault[T](param: Param[T]): Option[T]
  30. def getEstimator: Estimator[_]
  31. def getEstimatorParamMaps: Array[ParamMap]
  32. def getEvaluator: Evaluator
  33. final def getOrDefault[T](param: Param[T]): T
  34. def getParallelism: Int
  35. def getParam(paramName: String): Param[Any]
  36. final def getSeed: Long
  37. def getTrainRatio: Double
  38. final def hasDefault[T](param: Param[T]): Boolean
  39. def hasParam(paramName: String): Boolean
  40. def hashCode(): Int
  41. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
  42. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
  43. final def isDefined(param: Param[_]): Boolean
  44. final def isInstanceOf[T0]: Boolean
  45. final def isSet(param: Param[_]): Boolean
  46. def isTraceEnabled(): Boolean
  47. def log: Logger
  48. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
  49. def logDebug(msg: ⇒ String): Unit
  50. def logError(msg: ⇒ String, throwable: Throwable): Unit
  51. def logError(msg: ⇒ String): Unit
  52. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
  53. def logInfo(msg: ⇒ String): Unit
  54. def logName: String
  55. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
  56. def logTrace(msg: ⇒ String): Unit
  57. def logTuningParams(instrumentation: Instrumentation): Unit
  58. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
  59. def logWarning(msg: ⇒ String): Unit
  60. final def ne(arg0: AnyRef): Boolean
  61. final def notify(): Unit
  62. final def notifyAll(): Unit
  63. val parallelism: IntParam
  64. lazy val params: Array[Param[_]]
  65. def save(path: String): Unit
  66. final val seed: LongParam
  67. final def set(paramPair: ParamPair[_]): TrainValidationSplit.this.type
  68. final def set(param: String, value: Any): TrainValidationSplit.this.type
  69. final def set[T](param: Param[T], value: T): TrainValidationSplit.this.type
  70. def setCollectSubModels(value: Boolean): TrainValidationSplit.this.type
  71. final def setDefault(paramPairs: ParamPair[_]*): TrainValidationSplit.this.type
  72. final def setDefault[T](param: Param[T], value: T): TrainValidationSplit.this.type
  73. def setEstimator(value: Estimator[_]): TrainValidationSplit.this.type
  74. def setEstimatorParamMaps(value: Array[ParamMap]): TrainValidationSplit.this.type
  75. def setEvaluator(value: Evaluator): TrainValidationSplit.this.type
  76. def setParallelism(value: Int): TrainValidationSplit.this.type
  77. def setSeed(value: Long): TrainValidationSplit.this.type
  78. def setTrainRatio(value: Double): TrainValidationSplit.this.type
  79. final def synchronized[T0](arg0: ⇒ T0): T0
  80. def toString(): String
  81. val trainRatio: DoubleParam
  82. def transformSchema(schema: StructType): StructType
  83. def transformSchema(schema: StructType, logging: Boolean): StructType
  84. def transformSchemaImpl(schema: StructType): StructType
  85. val uid: String
  86. final def wait(): Unit
  87. final def wait(arg0: Long, arg1: Int): Unit
  88. final def wait(arg0: Long): Unit
  89. def write: MLWriter

Parameters

Members

Parameter setters

Parameter getters

(expert-only) Parameters

(expert-only) Parameter setters

(expert-only) Parameter getters