Spark 3.5.5 ScalaDoc - org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS (original) (raw)

class LogisticRegressionWithLBFGS extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable

Ordering

  1. Alphabetic
  2. By Inheritance

Inherited

  1. LogisticRegressionWithLBFGS

  2. GeneralizedLinearAlgorithm

  3. Serializable

  4. Serializable

  5. Logging

  6. AnyRef

  7. Any

  8. Hide All

  9. Show All

Instance Constructors

  1. new LogisticRegressionWithLBFGS()

Value Members

  1. final def !=(arg0: Any): Boolean
  2. final def ##(): Int
  3. final def ==(arg0: Any): Boolean
  4. var addIntercept: Boolean
  5. final def asInstanceOf[T0]: T0
  6. def clone(): AnyRef
  7. def createModel(weights: Vector, intercept: Double): LogisticRegressionModel
  8. final def eq(arg0: AnyRef): Boolean
  9. def equals(arg0: Any): Boolean
  10. def finalize(): Unit
  11. def generateInitialWeights(input: RDD[LabeledPoint]): Vector
  12. final def getClass(): Class[_]
  13. def getNumFeatures: Int
  14. def hashCode(): Int
  15. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
  16. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
  17. def isAddIntercept: Boolean
  18. final def isInstanceOf[T0]: Boolean
  19. def isTraceEnabled(): Boolean
  20. def log: Logger
  21. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
  22. def logDebug(msg: ⇒ String): Unit
  23. def logError(msg: ⇒ String, throwable: Throwable): Unit
  24. def logError(msg: ⇒ String): Unit
  25. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
  26. def logInfo(msg: ⇒ String): Unit
  27. def logName: String
  28. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
  29. def logTrace(msg: ⇒ String): Unit
  30. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
  31. def logWarning(msg: ⇒ String): Unit
  32. final def ne(arg0: AnyRef): Boolean
  33. final def notify(): Unit
  34. final def notifyAll(): Unit
  35. var numFeatures: Int
  36. var numOfLinearPredictor: Int
  37. val optimizer: LBFGS
  38. def run(input: RDD[LabeledPoint], initialWeights: Vector): LogisticRegressionModel
  39. def run(input: RDD[LabeledPoint]): LogisticRegressionModel
  40. def setIntercept(addIntercept: Boolean): LogisticRegressionWithLBFGS.this.type
  41. def setNumClasses(numClasses: Int): LogisticRegressionWithLBFGS.this.type
  42. def setValidateData(validateData: Boolean): LogisticRegressionWithLBFGS.this.type
  43. final def synchronized[T0](arg0: ⇒ T0): T0
  44. def toString(): String
  45. var validateData: Boolean
  46. val validators: List[(RDD[LabeledPoint]) ⇒ Boolean]
  47. final def wait(): Unit
  48. final def wait(arg0: Long, arg1: Int): Unit
  49. final def wait(arg0: Long): Unit

Ungrouped