Spark 3.5.5 ScalaDoc - org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD (original) (raw)
class StreamingLinearRegressionWithSGD extends StreamingLinearAlgorithm[LinearRegressionModel, LinearRegressionWithSGD] with Serializable
Ordering
- Alphabetic
- By Inheritance
Inherited
StreamingLinearRegressionWithSGD
Serializable
Serializable
StreamingLinearAlgorithm
Logging
AnyRef
Any
Hide All
Show All
Instance Constructors
- new StreamingLinearRegressionWithSGD()
Value Members
- final def !=(arg0: Any): Boolean
- final def ##(): Int
- final def ==(arg0: Any): Boolean
- val algorithm: LinearRegressionWithSGD
- final def asInstanceOf[T0]: T0
- def clone(): AnyRef
- final def eq(arg0: AnyRef): Boolean
- def equals(arg0: Any): Boolean
- def finalize(): Unit
- final def getClass(): Class[_]
- def hashCode(): Int
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- final def isInstanceOf[T0]: Boolean
- def isTraceEnabled(): Boolean
- def latestModel(): LinearRegressionModel
- def log: Logger
- def logDebug(msg: ⇒ String, throwable: Throwable): Unit
- def logDebug(msg: ⇒ String): Unit
- def logError(msg: ⇒ String, throwable: Throwable): Unit
- def logError(msg: ⇒ String): Unit
- def logInfo(msg: ⇒ String, throwable: Throwable): Unit
- def logInfo(msg: ⇒ String): Unit
- def logName: String
- def logTrace(msg: ⇒ String, throwable: Throwable): Unit
- def logTrace(msg: ⇒ String): Unit
- def logWarning(msg: ⇒ String, throwable: Throwable): Unit
- def logWarning(msg: ⇒ String): Unit
- var model: Option[LinearRegressionModel]
- final def ne(arg0: AnyRef): Boolean
- final def notify(): Unit
- final def notifyAll(): Unit
- def predictOn(data: JavaDStream[Vector]): JavaDStream[Double]
- def predictOn(data: DStream[Vector]): DStream[Double]
- def predictOnValues[K](data: JavaPairDStream[K, Vector]): JavaPairDStream[K, Double]
- def predictOnValues[K](data: DStream[(K, Vector)])(implicit arg0: ClassTag[K]): DStream[(K, Double)]
- def setConvergenceTol(tolerance: Double): StreamingLinearRegressionWithSGD.this.type
- def setInitialWeights(initialWeights: Vector): StreamingLinearRegressionWithSGD.this.type
- def setMiniBatchFraction(miniBatchFraction: Double): StreamingLinearRegressionWithSGD.this.type
- def setNumIterations(numIterations: Int): StreamingLinearRegressionWithSGD.this.type
- def setRegParam(regParam: Double): StreamingLinearRegressionWithSGD.this.type
- def setStepSize(stepSize: Double): StreamingLinearRegressionWithSGD.this.type
- final def synchronized[T0](arg0: ⇒ T0): T0
- def toString(): String
- def trainOn(data: JavaDStream[LabeledPoint]): Unit
- def trainOn(data: DStream[LabeledPoint]): Unit
- final def wait(): Unit
- final def wait(arg0: Long, arg1: Int): Unit
- final def wait(arg0: Long): Unit