coder.CuDNNConfig - Parameters to configure deep learning code generation with the CUDA Deep Neural Network library - MATLAB (original) (raw)
Main Content
Parameters to configure deep learning code generation with the CUDA Deep Neural Network library
Description
The coder.CuDNNConfig
object contains NVIDIA® cuDNN specific parameters that codegen uses for generating CUDA® code for deep neural networks.
To use a coder.CuDNNConfig
object for code generation, assign it to theDeepLearningConfig
property of a coder.gpuConfig object that you pass to codegen
.
Creation
Create a cuDNN configuration object by using the coder.DeepLearningConfig function with target library set as'cudnn'
.
Properties
AutoTuning
— Enable auto tuning
true (default) | false
Enable or disable auto tuning feature. Enabling auto tuning allows the cuDNN library to find the fastest convolution algorithms. This increases performance for larger networks such as SegNet
and ResNet
DataType
— Inference computation precision
'fp32'
(default) | 'int8'
Specify the precision of the inference computations in supported layers. When performing inference in 32-bit floats, use 'fp32'
. For 8-bit integer, use 'int8'
. Default value is 'fp32'
.
INT8
precision requires a CUDA GPU with minimum compute capability of 6.1. Compute capability of 6.2 does not support INT8
precision. Use theComputeCapability
property of the GpuConfig object to set the appropriate compute capability value.
Note
When performing inference in INT8
precision using cuDNN version 8.1.0, issues in the NVIDIA library may cause significant degradation in performance.
CalibrationResultFile
— Location of calibration MAT-file
''
(default) | character vector | string scalar
Location of the MAT-file containing the calibration data. Default value is''
. This option is applicable only whenDataType
is set to 'int8'
.
When performing quantization of a deep convolutional neural network, the calibrate (Deep Learning Toolbox) function exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. To generate code for the optimized network, save the results from the calibrate
function to a MAT-file and specify the location of this MAT-file to the code generator using this property. For more information, see Generate INT8 Code for Deep Learning Networks.
TargetLib
— Target library name
'cudnn' | character vector
A read-only value that specifies the name of the target library.
Examples
Specify Configuration Parameters for MEX Function Generation for the ResNet-50 Network
Create an entry-point function resnet_predict
that uses theimagePretrainedNetwork
function to load thedlnetwork
object that contains the ResNet-50
network. For more information, see Code Generation for dlarray
function out = resnet_predict(in)
dlIn = dlarray(in, 'SSCB'); persistent dlnet; if isempty(dlnet) dlnet = imagePretrainedNetwork('resnet50'); end
dlOut = predict(dlnet, dlIn); out = extractdata(dlOut);
Create a coder.gpuConfig
configuration object for MEX code generation.
cfg = coder.gpuConfig('mex');
Set the target language to C++.
Create a coder.CuDNNConfig
deep learning configuration object and assign it to the DeepLearningConfig
property of thecfg
configuration object.
cfg.DeepLearningConfig = coder.DeepLearningConfig(TargetLib = 'cudnn');
Use the -config
option of the codegen function to pass the cfg
configuration object. The codegen function must determine the size, class, and complexity of MATLAB® function inputs. Use the -args
option to specify the size of the input to the entry-point function.
codegen -args {ones(224,224,3,'single')} -config cfg resnet_predict;
The codegen
command places all the generated files in thecodegen
folder. The folder contains the CUDA code for the entry-point function resnet_predict.cu
, header, and source files containing the C++ class definitions for the convoluted neural network (CNN), weight, and bias files.
Version History
Introduced in R2018b
See Also
Functions
- codegen | imagePretrainedNetwork (Deep Learning Toolbox) | coder.DeepLearningConfig | coder.loadDeepLearningNetwork