coder.TensorRTConfig - Parameters to configure deep learning code generation with the NVIDIA TensorRT library - MATLAB (original) (raw)
Main Content
Parameters to configure deep learning code generation with the NVIDIA TensorRT library
Description
The coder.TensorRTConfig
object contains NVIDIA® high performance deep learning inference optimizer and run-time library (TensorRT) specific parameters. codegen uses those parameters for generating CUDA® code for deep neural networks.
To use a coder.TensorRTConfig
object for code generation, assign it to the DeepLearningConfig
property of a coder.gpuConfig object that you pass to codegen
.
Creation
Create a TensorRT configuration object by using the coder.DeepLearningConfig function with target library set as'tensorrt'
.
Properties
DataType
— Inference computation precision
'fp32'
(default) | 'fp16'
| 'int8'
Specify the precision of the inference computations in supported layers. When performing inference in 32-bit floats, use 'fp32'
. For half-precision, use 'fp16'
. For 8-bit integer, use'int8'
. Default value is 'fp32'
.
INT8
precision requires a CUDA GPU with minimum compute capability of 6.1, 7.0 or higher. Compute capability of 6.2 does not support INT8
precision.FP16
precision requires a CUDA GPU with minimum compute capability of 5.3, 6.0, 6.2 or higher. Use theComputeCapability
property of the GpuConfig object to set the appropriate compute capability value.
See the Deep Learning Prediction with NVIDIA TensorRT Library example for 8-bit integer prediction for a logo classification network by using TensorRT.
DataPath
— Image dataset location
''
(default) | character vector | string scalar
Location of the image dataset used during recalibration. Default value is''
. This option is applicable only whenDataType
is set to 'int8'
.
When you select the 'INT8'
option, TensorRT™ quantizes the floating-point data toint8
. The recalibration is performed with a reduced set of the calibration data. The calibration data must be present in the image data location specified by DataPath
.
NumCalibrationBatches
— Number of calibration batches
50
(default) | positive integer
Numeric value specifying the number of batches for int8
calibration. The software uses the product ofbatchsize*NumCalibrationBatches
to pick a random subset of images from the image dataset to perform calibration. Thebatchsize*NumCalibrationBatches
value must not be greater than the number of images present in the image dataset. This option is applicable only whenDataType
is set to 'int8'
.
NVIDIA recommends that about 500 images are sufficient for calibrating. Refer to the TensorRT documentation for more information.
TargetLib
— Target library name
'tensorrt' (default) | character vector
A read-only value that specifies the name of the target library.
Examples
Specify Configuration Parameters for MEX Function Generation for the ResNet-50 Network
Create an entry-point function resnet_predict
that uses theimagePretrainedNetwork
function to load thedlnetwork
object that contains the ResNet-50
network. For more information, see Code Generation for dlarray
function out = resnet_predict(in)
dlIn = dlarray(in, 'SSCB'); persistent dlnet; if isempty(dlnet) dlnet = imagePretrainedNetwork('resnet50'); end
dlOut = predict(dlnet, dlIn); out = extractdata(dlOut);
Create a coder.gpuConfig
configuration object for MEX code generation.
cfg = coder.gpuConfig('mex');
Set the target language to C++.
Create a coder.TensorRTConfig
deep learning configuration object. Assign it to the DeepLearningConfig
property of thecfg
configuration object.
cfg.DeepLearningConfig = coder.DeepLearningConfig('tensorrt');
Use the -config
option of the codegen function to pass the cfg
configuration object. The codegen function must determine the size, class, and complexity of MATLAB® function inputs. Use the -args
option to specify the size of the input to the entry-point function.
codegen -args {ones(224,224,3,'single')} -config cfg resnet_predict;
The codegen
command places all the generated files in thecodegen
folder. The folder contains the CUDA code for the entry-point function resnet_predict.cu
, header and source files containing the C++ class definitions for the convoluted neural network (CNN), weight, and bias files.
Version History
Introduced in R2018b
See Also
Functions
- codegen | imagePretrainedNetwork (Deep Learning Toolbox) | coder.DeepLearningConfig | coder.loadDeepLearningNetwork