Simulink.VariantControl - Create a variant control variable object - MATLAB (original) (raw)
Namespace: Simulink
Create a variant control variable object
Since R2021a
Description
The Simulink.VariantControl
class creates a variant control variable object to associate the value of a variant control variable with a variant activation time. Use the Simulink.VariantControl
object to determine the active choices of variant blocks and variant parameters during simulation.
To configure a Simulink.VariantControl
object as a model argument, the object must be in a model workspace. In the Model Explorer, selectArgument for the variant control object. For more information, seeConfigure Instance-Specific Values for Block Parameters in a Referenced Model.
Creation
`variantControlVariable` = Simulink.VariantControl
creates a variant control variable object with no value and'ActivationTime'
set to 'update diagram'
.
`variantControlVariable` = Simulink.VariantControl([Name,Value](#namevaluepairarguments))
creates a variant control variable object as specified by Name,Value
pair arguments. Using this syntax, you create an object and associate its value with a variant activation time.
Name-Value Arguments
Specify optional pairs of arguments asName1=Value1,...,NameN=ValueN
, where Name
is the argument name and Value
is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose Name
in quotes.
Example: 'Value', 1, 'ActivationTime', 'update diagram'
Value of variant control variable object, specified as any of these types:
- Scalar variable
- Enumerated type
Simulink.Parameter
object with value of type integer, an enumeration, or a mathematical expression specified using the slexpr function.- User-defined type that inherits from
Simulink.Parameter
When Value
is set to a Simulink.Parameter
object already used in the model or in another variant control object, use one of these syntaxes to avoid a compile-time error.
V = Simulink.VariantControl('Value',Simulink.Parameter(1));
P = Simulink.Parameter(1); V = Simulink.VariantControl('Value',copy(P));
Example: 'Value',1
Example: V = Simulink.VariantControl('Value',Simulink.Parameter(1));
Example: P = Simulink.Parameter(1); V = Simulink.VariantControl('Value',copy(P));
Example: vc_slprm = Simulink.Parameter(slexpr("a_vc+b_vc")); vc_startup = Simulink.VariantControl(Value=vc_slprm,ActivationTime="startup");
Simulink® can set active choice of the variant blocks or variant parameters at different stages of the simulation and code generation workflow. Based on the stage you specify using this property, Simulink determines if the generated code must contain only the active choice or both active and inactive choices. The property also determines whether to analyze all the choices for incompatibilities in signal attributes. For more information on variant activation time, see Activate Variant During Different Stages of Simulation and Code Generation Workflow.
When you specify the variant activation time as:
'update diagram'
–– Simulink does not analyze the choices for incompatibilities in signal attributes. It generates code only for the active choice.'update diagram analyze all choices'
–– Simulink analyzes both active and inactive choices for incompatibilities in signal attributes, however it generates code only for the active choice.'code compile'
–– Simulink analyzes both active and inactive choices of variant blocks or variant parameters for incompatibilities in signal attributes and it also generates code for both active and inactive choices. The choices are enclosed in C preprocessor conditional statements#if
and#endif
that are conditionally compiled when you compile the generated code.'startup'
–– Simulink analyzes both active and inactive choices of variant blocks and variant parameters for incompatibilities in signal attributes and it also generates code for both active and inactive choices. The choices are enclosed in regularif
conditions inside themodel_initialize
function of the generated code that are conditionally evaluated when you run the executable that is built from the code.'runtime'
–– The variant control object can be used to specify variant condition expressions in a Variant Subsystem block withruntime
variant activation time. Simulink analyzes both active and inactive choices of variant blocks and variant parameters for incompatibilities in signal attributes and generates code for both active and inactive choices. The generated code initializes the variant control variable object inside themodel_initialize
function. A Parameter Writer block inside a reset, reinitialize or triggered subsystem can write to the object during run time.
You can also use this setting to convert a Variant Subsystem block toruntime
activation by setting the Variant activation time parameter of the block toInherit from Simulink.VariantControl
.
Example: 'ActivationTime', 'code compile'
Methods
These methods specialize standard MATLAB® operators and functions for objects in this class.
ne | Compare if the inputs are not equal. |
---|---|
eq | Compares if the inputs are equal. |
not | Returns logical NOT of input. |
Examples
You can associate a variant control variable of type Simulink.VariantControl with a variant activation time. Simulink.VariantControl
variant control variables help you switch variant elements such as blocks and parameters coherently.
Consider a group of blocks that represents a design choice, with each block having the same variant control variable of type Simulink.VariantControl
. If you set the variant activation time of these blocks to inherit from Simulink.VariantControl
, the blocks inherit the activation time from the variant control variable. As a result, all the blocks have the same activation time and are activated simultaneously to generate rational simulation results and valid code.
You can define Simulink.VariantControl
type of control variables in storage locations as listed in Storage Locations for Variant Control Variables (Operands) in Variant Blocks.
Open the slexVariantSubsystems
model.
open_system('slexVariantSubsystems');
In the block parameters dialog box of the Controller
block:
1. Specify the variant controls, V == 1
and V == 2
.
set_param('slexVariantSubsystems/Controller/Linear Controller', 'VariantControl', 'V==1') set_param('slexVariantSubsystems/Controller/Nonlinear Controller', 'VariantControl', 'V==2')
2. Set Variant activation time to inherit from Simulink.VariantControl
to inherit the activation time from V
.
set_param('slexVariantSubsystems/Controller', 'VariantActivationTime', 'inherit from Simulink.VariantControl')
In the base workspace, define a Simulink.VariantControl
object, V
. Set its value to 1
, variant activation time to update diagram
, and then simulate the model.
V = Simulink.VariantControl('Value', 1, 'ActivationTime', 'update diagram')
V = VariantControl with properties:
Value: 1
ActivationTime: 'update diagram'
During simulation, the Controller
block inherits the update diagram
activation time from V
and the Linear Controller
block becomes active.
Double-click the Controller
block to see the active choice.
sim ('slexVariantSubsystems');
If you change the value of V
to 2
, the Nonlinear Controller
block becomes active during simulation. You can change the value of V
using this command or from Simulink.VariantControl
dialog box.
V.Value = 2; sim ('slexVariantSubsystems');
If you change the variant activation time of V
to update diagram analyze all choices
, the Controller
block inherits the update diagram analyze all choices
activation time from V
. You can observe the inherited activation time using CompiledVariantActivationTime
.
V.ActivationTime = 'update diagram analyze all choices'; sim ('slexVariantSubsystems'); get_param('slexVariantSubsystems/Controller', 'CompiledVariantActivationTime')
ans = 'update diagram analyze all choices'
Numeric values allow you to rapidly prototype variant values when you are still building your model. Numeric values help you focus more on building your variant values than on developing the expressions that activate those choices.
You can define numeric control values in locations listed in Storage Locations for Variant Control Variables (Operands) in Variant Parameters.
Open the slexVariantParameters
model.
open_system('slexVariantParameters')
In the MATLAB® Editor, specify variant choices in their simplest form as numeric values in Simulink.VariantVariable objects K1
and K2
.
K1 = Simulink.VariantVariable('Choices',{'V==1', 3.5, 'V==2', 8.5})
K1 = VariantVariable with 2 choices:
Condition Value
V == 1 3.5000 V == 2 8.5000
Specification: ''
Bank: ''
Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices
K2 = Simulink.VariantVariable('Choices',{'V==1', 4.5, 'V==2', 9.5})
K2 = VariantVariable with 2 choices:
Condition Value
V == 1 4.5000 V == 2 9.5000
Specification: ''
Bank: ''
Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices
Once you successfully create the Simulink.VariantVariable
objects, you can modify them by using the methods described in Public Methods or from the VariantVariable
dialog box.
Activate one of the variant values by defining a control variable, V
, and setting its value to 1
in a Simulink.VariantControl object.
V = Simulink.VariantControl('Value', 1, 'ActivationTime', 'update diagram')
V = VariantControl with properties:
Value: 1
ActivationTime: 'update diagram'
When you simulate the model, the condition V == 1
evaluates to true
. K1
is assigned a value of 3.5
and K2
is assigned a value of 8.5
.
sim ('slexVariantParameters')
If you change the value of V
to 2
, Simulink® sets the value of K1
and K2
to 4.5
and 9.5
during simulation. You can change the value of V
using this command or from Simulink.VariantControl
dialog box.
V.Value = 2; sim ('slexVariantParameters')
Use enumerated types to give meaningful names to integers used as variant control values. For more information on enumerated type data, see Use Enumerated Data in Simulink Models.
In the MATLAB® Editor, define the classes that map enumerated values to meaningful names.
Open the slexVariantParameters
model.
open_system('slexVariantParameters')
Specify the variant condition expressions V == EngType.Small
and V == EngType.Big
in Simulink.VariantVariable objects K1
and K2
.
K1 = Simulink.VariantVariable('Choices', {'V == EngType.Small',3.5,'V == EngType.Big',8.5})
K1 = VariantVariable with 2 choices:
Condition Value
V == EngType.Big 8.5000 V == EngType.Small 3.5000
Specification: ''
Bank: ''
Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices
K2 = Simulink.VariantVariable('Choices', {'V == EngType.Small',4.5,'V == EngType.Big',9.5})
K2 = VariantVariable with 2 choices:
Condition Value
V == EngType.Big 9.5000 V == EngType.Small 4.5000
Specification: ''
Bank: ''
Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices
Here, EngType
is an integer-based enumeration class that is derived from the built-in data type, int32
. The class has two enumeration values, Small
and Big
. These enumerated values have underlying integer values 1
and 2
. In this example, the enumeration class is defined in the base workspace. You can choose to define the class in other storage locations as listed in Storage Locations for Variant Control Variables (Operands) in Variant Blocks.
classdef EngType < Simulink.IntEnumType enumeration Small (1) Big (2) end methods (Static) function retVal = addClassNameToEnumNames() % ADDCLASSNAMETOENUMNAMES Specifies whether to add the class name % as a prefix to enumeration member names in generated code. % Return true or false. % If you do not define this method, no prefix is added. retVal = true; end end end
Once you successfully create the Simulink.VariantVariable
objects, you can modify them by using the methods described in Public Methods or from the VariantVariable
dialog box.
Activate one of the variant values by defining the control variable V
and setting its value to EngType.Small
in Simulink.VariantControl object V
.
V = Simulink.VariantControl('Value',EngType.Small,'ActivationTime','code compile')
V = VariantControl with properties:
Value: Small
ActivationTime: 'code compile'
When you simulate the model, the condition V == 1
evaluates to true
. K1
is assigned a value of 3.5
, and K2
is assigned a value of 8.5
.
sim('slexVariantParameters')
If you change the value of V
to 2
, Simulink® sets the value of K1
and K2
to 4.5
and 9.5
during simulation. You can change the value of V
using this command or from Simulink.VariantControl
dialog box.
V = VariantControl with properties:
Value: 2
ActivationTime: 'code compile'
sim ('slexVariantParameters')
The code that you generate using enumerated types contains the names of the values rather than integers.
% slexVariantParameters_private.h % #if V == EngType_Big || V == EngType_Small % /* Variable: K1 Referenced by: '/Gain' / % #if V == EngType_Big % #define rtCP_Gain_K1 (8.5) % #elif V == EngType_Small % #define rtCP_Gain_K1 (3.5) % #endif % #endif % % #if V == EngType_Big || V == EngType_Small % / Variable: K2 Referenced by: '/Gain1' / % #if V == EngType_Big % #define rtCP_Gain1_K2 (9.5) % #elif V == EngType_Small % #define rtCP_Gain1_K2 (4.5) % #endif % #endif % #endif / RTW_HEADER_slexVariantParameters_private_h_ */
Note that for variant parameters with startup activation time, only enumerations that are defined using these techniques are supported:
- Using the function Simulink.defineIntEnumType
- By subclassing built-in integer data types
int8
,int16
,int32
,uint8
, oruint16
, or by subclassingSimulink.IntEnumType
These enumerations are also supported when permanently stored in a Simulink® data dictionary. See Enumerations in Data Dictionary.
If you intend to generate code for a model containing variant parameters, specify variant control variables as Simulink.Parameter objects. Simulink.Parameter
objects allow you to specify other attributes, such as data type and storage class, and control the appearance and placement of variant control variables in generated code.
- You can define a variant control variable of type
Simulink.Parameter
only in the base workspace, model workspace, or in a data dictionary. For more information on storage locations for variant control variables, see Storage Locations for Variant Control Variables (Operands) in Variant Parameters. Simulink.Parameter
objects within structures and that have data types other thanSimulink.Bus
objects are not supported.
Open the slexVariantParameters
model.
open_system('slexVariantParameters');
In the MATLAB® Editor, define a Simulink.Parameter
object.
VSS_MODE = Simulink.Parameter; VSS_MODE.Value = 1; VSS_MODE.DataType = 'int32'; VSS_MODE.CoderInfo.StorageClass = 'Custom'; VSS_MODE.CoderInfo.CustomStorageClass = 'Define'; VSS_MODE.CoderInfo.CustomAttributes.HeaderFile ='demo_macros.h';
Variant control variables defined as Simulink.Parameter
objects can have any of the storage classes listed in Storage Classes for Different Variant Activation Times (Simulink Coder).
You can also convert a scalar variant control variable into a Simulink.Parameter
object. For more information, see Convert Variant Control Variables into Simulink.Parameter Objects.
Specify the object as a variant control in Simulink.VariantVariable objects K1
and K2
.
K1 = Simulink.VariantVariable('Choices',{'V == 1',3.5,'V == 2',8.5}); K2 = Simulink.VariantVariable('Choices',{'V == 1',4.5,'V == 2',9.5});
Once you successfully create the Simulink.VariantVariable
objects, you can modify them by using the methods described in Public Methods or from the VariantVariable
dialog box.
Activate one of the variant values by defining a Simulink.VariantControl object V
and setting its Value property to VSS_MODE
.
V = Simulink.VariantControl('Value',copy(VSS_MODE),'ActivationTime','code compile');
When you simulate the model, the condition V == 1
evaluates to true
. K1
is assigned a value of 3.5
, and K2
is assigned a value of 8.5
.
sim('slexVariantParameters');
If you change the value of V
to 2
, Simulink® sets the value of K1
and K2
to 4.5
and 9.5
during simulation. You can change the value of V
using this command or from the Simulink.VariantControl
dialog box.
V.Value.Value=2; sim('slexVariantParameters');
Generate code from the model. For information on how to generate code, see Generate Code Using Embedded Coder (Embedded Coder)
The generated code contains both Linear
and Nonlinear
choices in preprocessor conditionals #if
and #elif
because of the code compile
activation time. The variant control variable V
is defined using a macro — #define
directive — in the header file demo_macros.h
. You can control the appearance and placement of V
in the generated code and prevent optimizations from eliminating storage for V
using the storage class property. For more information, see Storage Classes for Different Variant Activation Times (Simulink Coder).
% demo_macros.h % /* Exported data define / % % / Definition for custom storage class: Define / % #define V 2 / Referenced by: % * '/Gain' % * '/Gain1' % / % #endif / RTW_HEADER_demo_macros_h_ / % % /
Set the value of a Simulink.VariantControl object to an object of a user-defined data class that derives from Simulink.Parameter. The user-defined class package that contains the class definition must be available on the MATLAB® search path. Data objects that you create from your package can use the storage classes that the package defines. For an example that shows how to create a data class in a package, see Define Data Classes.
Explore the Model
In this example, the +myPackage
folder is a user-defined data class package folder that contains the class folder @myExParameter
. The class folder contains the class definition file myExParameter.m
and the class derives from Simulink.Parameter
. The csc_registration.m
file contains the custom storage class defined for this package using the Custom Storage Class Designer.
open_system("slexVariantParameters");
- The
slexVariantParameters
model uses two variant parametersK1
andK2
, and aSimulink.VariantControl
objectV
, that are defined in the base workspace. - Double-click the variant control object
V
in the base workspace to open theSimulink.VariantControl
dialog box. - Select the custom class
myPackage.myExParameter
from the Value type list. - In the Value box, enter
1
as the value of the variant control. - From the Data type list, select
int32
and from the Activation time list, selectstartup
. - In the Code Generation tab, select the custom storage class
myPackage_ExportedGlobal
defined in the package.
Generate code from the model. For information on how to generate code, see Generate Code Using Embedded Coder (Embedded Coder).
The generated header file myParams.h
contains the extern
declaration for the variable V
and the generated file myParams.c
contains the definition of the variable according to the settings in the custom storage class definition.
/* myParams.h / / Declaration for custom storage class: myPackage_ExportedGlobal */ extern int32_T V;
/* myParams.c / / Exported data definition / / Definition for custom storage class: myPackage_ExportedGlobal */ int32_T V = 1;
Set the value of a Simulink.VariantControl
object and the value of a choice of a Simulink.VariantVariable
object to mathematical expressions involving literal numbers, MATLAB® variables, or Simulink.Parameter
objects. With expressions, you can:
- Express a value as a relationship between known physical constants instead of as an unidentifiable literal number.
- Explicitly model algebraic dependencies between parameter data. When you change the values of independent data, you do not need to remember to adjust the values of dependent data.
To specify a mathematical expression for the value of a Simulink.VariantControl
object or the value of a choice of a Simulink.VariantVariable
object:
- Create a
Simulink.Parameter
object or an object of a class that inherits fromSimulink.Parameter
. - Set the
Value
property of the object to the expression by using theslexpr
function. - Use the object to set the value of the variant control or the values of the choices of a variant parameter.
You can generate C or C++ code that preserves the expressions using Embedded Coder® by applying compatible storage classes. For applicable code generation techniques and considerations, see Code Generation of Parameter Objects With Expression Values (Embedded Coder).
Explore Example
The example model uses a variant parameter object vp_tunable
that is used to set the Gain parameter of a Gain block. The model configuration parameter Default parameter behavior for code generation optimization is set to Tunable
.
vp_tunable
uses a Simulink.VariantControl
object vc_startup
that has activation time set to startup
and ExportedGlobal
storage class, which yields a global variable in the generated code. The choices of vp_tunable
are Simulink.Parameter
objects with values set to mathematical expressions. The values of the parameter objects a_vp
, b_vp
, a_vc
, and b_vc
that are used in the expressions are imported from an external file external_imp_defines.h
.
% These parameter objects have the CustomStorageClass property set to ImportedDefine and HeaderFile property set to 'external_imp_defines.h' a_vc = Simulink.Parameter(int32(1)); b_vc = Simulink.Parameter(int32(2)); a_vp = Simulink.Parameter(int32(6)); b_vp = Simulink.Parameter(int32(5));
% This parameter object has the StorageClass property set to 'ExportedGlobal' vc_slprm = Simulink.Parameter(slexpr("a_vc+b_vc")); % Variant control for the vp_tunable parameter vc_startup = Simulink.VariantControl(Value=vc_slprm,ActivationTime="startup");
% These parameter objects have the CustomStorageClass property set to 'ExportToFile', HeaderFile property set to 'varparam.h', and DefinitionFile property set to 'varparam.c' slparam_1 = Simulink.Parameter(slexpr("a_vp+b_vp")); slparam_2 = Simulink.Parameter(slexpr("a_vp-b_vp")); slparam_3 = Simulink.Parameter(slexpr("a_vp*b_vp"));
vp_tunable = Simulink.VariantVariable('Choices', ... {'vc_startup==1','slparam_1','vc_startup==2','slparam_2','(default)','slparam_3'});
This code snippet shows the content of the external file external_imp_defines.h
.
#define a_vc 1 #define b_vc 2 #define a_vp 6 #define b_vp 5
With Embedded Coder, you can generate code that defines a global variable and initializes it by using an expression involving system constants.
/* varparam.c / / Definition for custom storage class: ExportToFile / real_T slparam_1 = a_vp+b_vp; real_T slparam_2 = a_vp-b_vp; real_T slparam_3 = a_vpb_vp;
/* .c / / Exported block parameters */ int32_T vc_startup = a_vc+b_vc;
/* Model initialize function */ if (vc_startup == 1) { mVarParamVCtrlSlexpr_P.vp_tunable = slparam_1; } else if (vc_startup == 2) { mVarParamVCtrlSlexpr_P.vp_tunable = slparam_2; } else { mVarParamVCtrlSlexpr_P.vp_tunable = slparam_3; }
Similarly, in this model, vp_macro
is a variant parameter that uses a Simulink.VariantControl
object vc_cc
with activation time set to code compile
. Both vc_cc
and the choices of vp_macro
have the Define
storage class that yields a macro in the generated code. The values of the parameter objects a_cc
, b_cc
, a_vp_cc
, and b_vp_cc
that are used in the expressions are imported from an external file external_imp_defines.h
.
% These parameter objects have the CustomStorageClass property set to 'ImportedDefine' and HeaderFile property set to 'external_imp_defines.h' a_cc = Simulink.Parameter(int32(1)); b_cc = Simulink.Parameter(int32(2)); a_vp_cc = Simulink.Parameter(int32(7)); b_vp_cc = Simulink.Parameter(int32(4));
% This parameter object has the StorageClass property set to 'Define' and the HeaderFile property set to 'vcc_define.h' vc_slprm_cc = Simulink.Parameter(slexpr("a_cc+b_cc")); % Variant control for the vp_macro parameter vc_cc = Simulink.VariantControl(Value=vc_slprm_cc,ActivationTime="code compile");
% These parameter objects have the CustomStorageClass property set to 'Define' and the HeaderFile property set to 'varparam.h' slparam_1_cc = Simulink.Parameter(slexpr("a_vp_cc+b_vp_cc")); slparam_2_cc = Simulink.Parameter(slexpr("a_vp_cc-b_vp_cc")); slparam_3_cc = Simulink.Parameter(slexpr("a_vp_cc*b_vp_cc"));
vp_macro = Simulink.VariantVariable('Choices', ... {'vc_cc==1', 'slparam_1_cc', 'vc_cc==2', 'slparam_2_cc', '(default)', 'slparam_3_cc'});
This code snippet shows the content of the external file external_imp_defines.h
.
#define a_cc 1 #define b_cc 2 #define a_vp_cc 7 #define b_vp_cc 4
For this variant parameter, Embedded Coder generates code that defines a macro whose value is an expression involving other macros.
/* vcc_define.h / / Definition for custom storage class: Define / #define vc_cc a_cc+b_cc / Referenced by: '/Gain1' */ #endif
/* varparam.h / / Definition for custom storage class: Define / #define slparam_1_cc a_vp_cc+b_vp_cc / Referenced by: '/Gain1' / #define slparam_2_cc a_vp_cc-b_vp_cc / Referenced by: '/Gain1' / #define slparam_3_cc a_vp_ccb_vp_cc
/* .c / / Model initialize function */ #if vc_cc == 1 mVarParamVCtrlSlexpr_P.vp_macro = slparam_1_cc; #elif vc_cc == 2 mVarParamVCtrlSlexpr_P.vp_macro = slparam_2_cc; #else mVarParamVCtrlSlexpr_P.vp_macro = slparam_3_cc; #endif
Use a Parameter Writer block within an Initialize Function block to initialize the value of Simulink.VariantControl
objects associated with a variant parameter.
You can use Parameter Writer blocks within an Initialize Function block to initialize the value of Simulink.VariantControl
objects associated with a variant parameter (Simulink.VariantVariable object). The variant controls must have theirActivationTime
property set to startup
. This setup allows you to assign the variant control value on the model initialize event, thereby initializing the associated variant parameter. The variant controls and the variant parameter must be defined in the base workspace, model workspace, or data dictionaries linked to the model.
This model that implements a counter using a Unit Delay block uses a variant control V
to specify the variant conditions for the variant parameter K
. The Parameter Writer block inside theInitialize Function block sets the value of V
. TheInitialize Function block also initializes the Unit Delay block state with the variant parameter K
by using a State Writer block.
When generating code for this model with Embedded Coder®, the model initialize function initializes the variant controlV
before the variant parameterK
.
/* Model initialize function */
/* ParameterWriter: '<S1>/Parameter Writer' incorporates Constant: '<S1>/Constant1' */
V = mVariantControlParamWriter_P.Constant1_Value_a;
/* Variant Parameters startup activation time */
if (V == 1) {
mVariantControlParamWriter_P.K = 10.0;
} else if (V == 2) {
mVariantControlParamWriter_P.K = 20.0;
} else if (V == 3) {
mVariantControlParamWriter_P.K = 30.0;
}
/* End of ParameterWriter: '<S1>/Parameter Writer' */
/* StateWriter: '<S1>/State Writer' incorporates Constant: '<S1>/Constant' */
mVariantControlParamWriter_DW.UnitDelay_DSTATE =
mVariantControlParamWriter_P.K;
For applicable limitations, see Limitations.
Limitations
- Using a
Simulink.VariantControl
object directly as an S-Function parameter in a noninlined S-Function block is not supported for code generation. Simulink.VariantControl
value must be specified as one of these types:- Scalar variable
- Enumerated type
Simulink.Parameter
object with value of type integer, an enumeration, or a mathematical expression specified using the slexpr function.- User-defined type that inherits from
Simulink.Parameter
Simulink.VariantControl
objects defined in model workspace do not support default code mappings settings for model data.
Extended Capabilities
Version History
Introduced in R2021a
Before R2025a, when you specified the value of a Simulink.VariantControl object with startup
variant activation time as an integer-convertible double
data type, Simulink implicitly converted the value to int32
. In R2025a, this conversion is no longer performed. When you generate code for models that use such variant controls, the code generator declares the variant control variable to be ofdouble
data type instead of int32
.
You can set the Value
property of aSimulink.VariantControl
object to a Simulink.Parameter
object that contains a mathematical expression specified using the slexpr function.
Simulink reports a compile-time error when you try to set the value of aSimulink.VariantControl
object to a Simulink.Parameter
object that is already used in the model or in another variant control object.
To avoid the error, set the value of a Simulink.VariantControl
object by creating a separate Simulink.Parameter
object or by creating a copy of an existing Simulink.Parameter
object using the copy method. For example:
P = Simulink.Parameter(1);
V = Simulink.VariantControl('Value',copy(P));
or
V = Simulink.VariantControl('Value',Simulink.Parameter(1));
The Simulink.VariantControl
object does not support setting itsValue
property to a Simulink.Parameter object with Value
set to the slexpr function or a nonscalar value.