tokenizedDocument - Array of tokenized documents for text analysis - MATLAB (original) (raw)
Array of tokenized documents for text analysis
Description
A tokenized document is a document represented as a collection of words (also known as tokens) which is used for text analysis.
Use tokenized documents to:
- Detect complex tokens in text, such as web addresses, emoticons, emoji, and hashtags.
- Remove words such as stop words using the removeWords or removeStopWords functions.
- Perform word-level preprocessing tasks such as stemming or lemmatization using the normalizeWords function.
- Analyze word and n-gram frequencies using bagOfWords and bagOfNgrams objects.
- Add sentence and part-of-speech details using the addSentenceDetails and addPartOfSpeechDetails functions.
- Add entity tags using the addEntityDetails function.
- Add grammatical dependency details using the addDependencyDetails function.
- View details about the tokens using the tokenDetails function.
The function supports English, Japanese, German, and Korean text. To learn how to usetokenizedDocument
for other languages, see Language Considerations.
Creation
Syntax
Description
`documents` = tokenizedDocument
creates a scalar tokenized document with no tokens.
`documents` = tokenizedDocument([str](#d126e52710))
tokenizes the elements of a string array and returns a tokenized document array.
`documents` = tokenizedDocument([str](#d126e52710),[Name,Value](#namevaluepairarguments))
specifies additional options using one or more name-value pair arguments.
Input Arguments
str
— Input text
string array | character vector | cell array of character vectors | cell array of string arrays
Input text, specified as a string array, character vector, cell array of character vectors, or cell array of string arrays.
If the input text has not already been split into words, thenstr
must be a string array, character vector, cell array of character vectors, or a cell array of string scalars.
Example: ["an example of a short document";"a second short document"]
Example: 'an example of a single document'
Example: {'an example of a short document';'a second short document'}
If the input text has already been split into words, then specify TokenizeMethod
to be "none"
. Ifstr
contains a single document, then it must be a string vector of words, a row cell array of character vectors, or a cell array containing a single string vector of words. If str
contains multiple documents, then it must be a cell array of string arrays.
Example: ["an" "example" "document"]
Example: {'an','example','document'}
Example: {["an" "example" "of" "a" "short" "document"]}
Example: {["an" "example" "of" "a" "short" "document"];["a" "second" "short" "document"]}
Data Types: string
| char
| cell
Name-Value Arguments
Specify optional pairs of arguments asName1=Value1,...,NameN=ValueN
, where Name
is the argument name and Value
is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose Name
in quotes.
Example: DetectPatterns={'email-address','web-address'}
detects email addresses and web addresses
TokenizeMethod
— Method to tokenize documents
"unicode"
| "mecab"
| mecabOptions
object | "none"
Method to tokenize documents, specified as one of these values:
"unicode"
– Tokenize input text using rules based on Unicode® Standard Annex #29 [1] and the ICU tokenizer [2]. Ifstr
is a cell array, then the elements ofstr
must be string scalars or character vectors. IfLanguage
is"en"
or"de"
, then"unicode"
is the default."mecab"
– Tokenize Japanese and Korean text using the MeCab tokenizer [3]. IfLanguage
is"ja"
or"ko"
, then"mecab"
is the default.mecabOptions
object – Tokenize Japanese and Korean text using the MeCab options specified by a mecabOptions object."none"
– Do not tokenize the input text.
If the input text has already been split into words, then specify TokenizeMethod
to be "none"
. Ifstr
contains a single document, then it must be a string vector of words, a row cell array of character vectors, or a cell array containing a single string vector of words. If str
contains multiple documents, then it must be a cell array of string arrays.
DetectPatterns
— Patterns of complex tokens to detect
"all"
(default) | character vector | string array | cell array of character vectors
Patterns of complex tokens to detect, specified as"none"
, "all"
, or a string or cell array containing one or more of these values:
"email-address"
– Detect email addresses. For example, treat"user@domain.com"
as a single token."web-address"
– Detect web addresses. For example, treat"https://www.mathworks.com"
as a single token."hashtag"
– Detect hashtags. For example, treat"#MATLAB"
as a single token."at-mention"
– Detect at-mentions. For example, treat"@MathWorks"
as a single token."emoticon"
– Detect emoticons. For example, treat":-D"
as a single token.
If DetectPatterns
is"none"
, then the function does not detect any complex token patterns. If DetectPatterns
is"all"
, then the function detects all the listed complex token patterns.
Example: DetectPatterns="hashtag"
Example: DetectPatterns={'email-address','web-address'}
Data Types: char
| string
| cell
CustomTokens
— Custom tokens to detect
''
(default) | string array | character vector | cell array of character vectors | table
Custom tokens to detect, specified as one of these values:
- A string array, character vector, or cell array of character vectors containing the custom tokens.
- A table containing the custom tokens in a column named
Token
and the corresponding token types a column namedType
.
If you specify the custom tokens as a string array, character vector, or cell array of character vectors, then the function assigns token type "custom"
. To specify a custom token type, use table input. To view the token types, use thetokenDetails function.
When there are two or more conflicting custom tokens, the function uses the longest one. When a custom token conflicts with a regular expression, the function uses the regular expression.
Example: CustomTokens=["C++" "C#"]
Data Types: char
| string
| table
| cell
RegularExpressions
— Regular expressions to detect
''
(default) | string array | character vector | cell array of character vectors | table
Regular expressions to detect, specified as one of these values.
- A string array, character vector, or cell array of character vectors containing regular expressions.
- A table containing regular expressions a column named
Pattern
and the corresponding token types in a column namedType
.
If you specify the regular expressions as a string array, character vector, or cell array of character vectors, then the function assigns token type "custom"
. To specify a custom token type, use table input. To view the token types, use the tokenDetails function.
When there are two or more conflicting regular expressions, the function uses the last match. When a custom token conflicts with a regular expression, the function uses the regular expression.
Example: RegularExpressions=["ver:\d+" "rev:\d+"]
Data Types: char
| string
| table
| cell
TopLevelDomains
— Top-level domains to use for web address detection
character vector | string array | cell array of character vectors
Top-level domains to use for web address detection, specified as a character vector, string array, or cell array of character vectors. By default, the function uses the output of the topLevelDomains function.
This option only applies if DetectPatterns
is"all"
or contains"web-address"
.
Example: TopLevelDomains=["com" "net" "org"]
Data Types: char
| string
| cell
Language
— Language
"en"
| "ja"
| "de"
| "ko"
Language, specified as one of these options:
"en"
– English. This option also sets the default value forTokenizeMethod
to"unicode"
."ja"
– Japanese. This option also sets the default value forTokenizeMethod
to"mecab"
."de"
– German. This option also sets the default value forTokenizeMethod
to"unicode"
."ko"
– Korean. This option also sets the default value forTokenizeMethod
to"mecab"
.
If you do not specify a value, then the function detects the language from the input text using the corpusLanguage function.
This option specifies the language details of the tokens. To view the language details of the tokens, use tokenDetails. These language details determine the behavior of the removeStopWords,addPartOfSpeechDetails, normalizeWords, addSentenceDetails, and addEntityDetails functions on the tokens.
For more information about language support in Text Analytics Toolbox™, see Language Considerations.
Example: Language="ja"
Properties
Vocabulary
— Unique words in the documents
string array
Unique words in the documents, specified as a string array. The words do not appear in any particular order.
Data Types: string
Object Functions
Preprocessing
Tokens Details
Export
Manipulation and Conversion
doclength | Length of documents in document array |
---|---|
context | Search documents for word or n-gram occurrences in context |
contains | Check if pattern is substring in documents |
containsWords | Check if word is member of documents |
containsNgrams | Check if n-gram is member of documents |
splitSentences | Split text into sentences |
joinWords | Convert documents to string by joining words |
doc2cell | Convert documents to cell array of string vectors |
string | Convert scalar document to string vector |
plus | Append documents |
replace | Replace substrings in documents |
docfun | Apply function to words in documents |
regexprep | Replace text in words of documents using regular expression |
Display
wordcloud | Create word cloud chart from text, bag-of-words model, bag-of-n-grams model, or LDA model |
---|---|
sentenceChart | Plot grammatical dependency parse tree of sentence |
Examples
Tokenize Text
Create tokenized documents from a string array.
str = [ "an example of a short sentence" "a second short sentence"]
str = 2x1 string "an example of a short sentence" "a second short sentence"
documents = tokenizedDocument(str)
documents = 2x1 tokenizedDocument:
6 tokens: an example of a short sentence
4 tokens: a second short sentence
Detect Complex Tokens
Create a tokenized document from the string str
. By default, the function treats the hashtag "#MATLAB"
, the emoticon ":-D"
, and the web address "https://www.mathworks.com/help"
as single tokens.
str = "Learn how to analyze text in #MATLAB! :-D see https://www.mathworks.com/help/"; document = tokenizedDocument(str)
document = tokenizedDocument:
11 tokens: Learn how to analyze text in #MATLAB ! :-D see https://www.mathworks.com/help/
To detect only hashtags as complex tokens, specify the 'DetectPatterns'
option to be 'hashtag'
only. The function then tokenizes the emoticon ":-D"
and the web address "https://www.mathworks.com/help"
into multiple tokens.
document = tokenizedDocument(str,'DetectPatterns','hashtag')
document = tokenizedDocument:
24 tokens: Learn how to analyze text in #MATLAB ! : - D see https : / / www . mathworks . com / help /
Remove Stop Words from Documents
Remove the stop words from an array of documents using removeStopWords
. The tokenizedDocument
function detects that the documents are in English, so removeStopWords
removes English stop words.
documents = tokenizedDocument([ "an example of a short sentence" "a second short sentence"]); newDocuments = removeStopWords(documents)
newDocuments = 2x1 tokenizedDocument:
3 tokens: example short sentence
3 tokens: second short sentence
Stem Words in Documents
Stem the words in a document array using the Porter stemmer.
documents = tokenizedDocument([ "a strongly worded collection of words" "another collection of words"]); newDocuments = normalizeWords(documents)
newDocuments = 2x1 tokenizedDocument:
6 tokens: a strongli word collect of word
4 tokens: anoth collect of word
Specify Custom Tokens
The tokenizedDocument
function, by default, splits words and tokens that contain symbols. For example, the function splits "C++" and "C#" into multiple tokens.
str = "I am experienced in MATLAB, C++, and C#."; documents = tokenizedDocument(str)
documents = tokenizedDocument:
14 tokens: I am experienced in MATLAB , C + + , and C # .
To prevent the function from splitting tokens that contain symbols, specify custom tokens using the 'CustomTokens'
option.
documents = tokenizedDocument(str,'CustomTokens',["C++" "C#"])
documents = tokenizedDocument:
11 tokens: I am experienced in MATLAB , C++ , and C# .
The custom tokens have token type "custom"
. View the token details. The column Type
contains the token types.
tdetails = tokenDetails(documents)
tdetails=11×5 table Token DocumentNumber LineNumber Type Language _____________ ______________ __________ ___________ ________
"I" 1 1 letters en
"am" 1 1 letters en
"experienced" 1 1 letters en
"in" 1 1 letters en
"MATLAB" 1 1 letters en
"," 1 1 punctuation en
"C++" 1 1 custom en
"," 1 1 punctuation en
"and" 1 1 letters en
"C#" 1 1 custom en
"." 1 1 punctuation en
To specify your own token types, input the custom tokens as a table with the tokens in a column named Token
, and the types in a column named Type
. To assign a custom type to a token that doesn't include symbols, include in the table too. For example, create a table that will assign "MATLAB", "C++", and "C#" to the "programming-language"
token type.
T = table; T.Token = ["MATLAB" "C++" "C#"]'; T.Type = ["programming-language" "programming-language" "programming-language"]'
T=3×2 table
Token Type
________ ______________________
"MATLAB" "programming-language"
"C++" "programming-language"
"C#" "programming-language"
Tokenize the text using the table of custom tokens and view the token details.
documents = tokenizedDocument(str,'CustomTokens',T); tdetails = tokenDetails(documents)
tdetails=11×5 table Token DocumentNumber LineNumber Type Language _____________ ______________ __________ ____________________ ________
"I" 1 1 letters en
"am" 1 1 letters en
"experienced" 1 1 letters en
"in" 1 1 letters en
"MATLAB" 1 1 programming-language en
"," 1 1 punctuation en
"C++" 1 1 programming-language en
"," 1 1 punctuation en
"and" 1 1 letters en
"C#" 1 1 programming-language en
"." 1 1 punctuation en
Specify Custom Tokens Using Regular Expressions
The tokenizedDocument
function, by default, splits words and tokens containing symbols. For example, the function splits the text "ver:2"
into multiple tokens.
str = "Upgraded to ver:2 rev:3."; documents = tokenizedDocument(str)
documents = tokenizedDocument:
9 tokens: Upgraded to ver : 2 rev : 3 .
To prevent the function from splitting tokens that have particular patterns, specify those patterns using the 'RegularExpressions'
option.
Specify regular expressions to detect tokens denoting version and revision numbers: strings of digits appearing after "ver:"
and "rev:"
respectively.
documents = tokenizedDocument(str,'RegularExpressions',["ver:\d+" "rev:\d+"])
documents = tokenizedDocument:
5 tokens: Upgraded to ver:2 rev:3 .
Custom tokens, by default, have token type "custom"
. View the token details. The column Type
contains the token types.
tdetails = tokenDetails(documents)
tdetails=5×5 table Token DocumentNumber LineNumber Type Language __________ ______________ __________ ___________ ________
"Upgraded" 1 1 letters en
"to" 1 1 letters en
"ver:2" 1 1 custom en
"rev:3" 1 1 custom en
"." 1 1 punctuation en
To specify your own token types, input the regular expressions as a table with the regular expressions in a column named Pattern
and the token types in a column named Type
.
T = table; T.Pattern = ["ver:\d+" "rev:\d+"]'; T.Type = ["version" "revision"]'
T=2×2 table
Pattern Type
_________ __________
"ver:\d+" "version"
"rev:\d+" "revision"
Tokenize the text using the table of custom tokens and view the token details.
documents = tokenizedDocument(str,'RegularExpressions',T); tdetails = tokenDetails(documents)
tdetails=5×5 table Token DocumentNumber LineNumber Type Language __________ ______________ __________ ___________ ________
"Upgraded" 1 1 letters en
"to" 1 1 letters en
"ver:2" 1 1 version en
"rev:3" 1 1 revision en
"." 1 1 punctuation en
Search Documents for Word Occurrences
Load the example data. The file sonnetsPreprocessed.txt
contains preprocessed versions of Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space. Extract the text from sonnetsPreprocessed.txt
, split the text into documents at newline characters, and then tokenize the documents.
filename = "sonnetsPreprocessed.txt"; str = extractFileText(filename); textData = split(str,newline); documents = tokenizedDocument(textData);
Search for the word "life".
tbl = context(documents,"life"); head(tbl)
Context Document Word
________________________________________________________ ________ ____
"consumst thy self single life ah thou issueless shalt " 9 10
"ainted counterfeit lines life life repair times pencil" 16 35
"d counterfeit lines life life repair times pencil pupi" 16 36
" heaven knows tomb hides life shows half parts write b" 17 14
"he eyes long lives gives life thee " 18 69
"tender embassy love thee life made four two alone sink" 45 23
"ves beauty though lovers life beauty shall black lines" 63 50
"s shorn away live second life second head ere beautys " 68 27
View the occurrences in a string array.
ans = 23x1 string "consumst thy self single life ah thou issueless shalt " "ainted counterfeit lines life life repair times pencil" "d counterfeit lines life life repair times pencil pupi" " heaven knows tomb hides life shows half parts write b" "he eyes long lives gives life thee " "tender embassy love thee life made four two alone sink" "ves beauty though lovers life beauty shall black lines" "s shorn away live second life second head ere beautys " "e rehearse let love even life decay lest wise world lo" "st bail shall carry away life hath line interest memor" "art thou hast lost dregs life prey worms body dead cow" " thoughts food life sweetseasond showers gro" "tten name hence immortal life shall though once gone w" " beauty mute others give life bring tomb lives life fa" "ve life bring tomb lives life fair eyes poets praise d" " steal thyself away term life thou art assured mine li" "fe thou art assured mine life longer thy love stay dep" " fear worst wrongs least life hath end better state be" "anst vex inconstant mind life thy revolt doth lie o ha" " fame faster time wastes life thou preventst scythe cr" "ess harmful deeds better life provide public means pub" "ate hate away threw savd life saying " " many nymphs vowd chaste life keep came tripping maide"
Tokenize Japanese Text
Tokenize Japanese text using tokenizedDocument
. The function automatically detects Japanese text.
str = [ "恋に悩み、苦しむ。" "恋の悩みで苦しむ。" "空に星が輝き、瞬いている。" "空の星が輝きを増している。"]; documents = tokenizedDocument(str)
documents = 4x1 tokenizedDocument:
6 tokens: 恋 に 悩み 、 苦しむ 。
6 tokens: 恋 の 悩み で 苦しむ 。
10 tokens: 空 に 星 が 輝き 、 瞬い て いる 。
10 tokens: 空 の 星 が 輝き を 増し て いる 。
Tokenize German Text
Tokenize German text using tokenizedDocument
. The function automatically detects German text.
str = [ "Guten Morgen. Wie geht es dir?" "Heute wird ein guter Tag."]; documents = tokenizedDocument(str)
documents = 2x1 tokenizedDocument:
8 tokens: Guten Morgen . Wie geht es dir ?
6 tokens: Heute wird ein guter Tag .
More About
Language Considerations
The tokenizedDocument function has built-in rules for English, Japanese, German, and Korean only. For English and German text, the 'unicode'
tokenization method of tokenizedDocument detects tokens using rules based on Unicode Standard Annex #29 [1] and the ICU tokenizer [2], modified to better detect complex tokens such as hashtags and URLs. For Japanese and Korean text, the'mecab'
tokenization method detects tokens using rules based on the MeCab tokenizer [3].
For other languages, you can still try using tokenizedDocument
. IftokenizedDocument
does not produce useful results, then try tokenizing the text manually. To create atokenizedDocument
array from manually tokenized text, set the 'TokenizeMethod' option to'none'
.
For more information, see Language Considerations.
References
Version History
Introduced in R2017b
R2022a: tokenizedDocument
does not split tokens containing digits and some special characters
Starting in R2022a, tokenizedDocument
does not split some tokens where digits appear next to some special characters such as periods, hyphens, colons, slashes, and scientific notation. This behavior can produce better results when tokenizing text containing numbers, dates, and times.
In previous versions, tokenizedDocument
might split at these characters. To reproduce the behavior, tokenize the text manually or insert whitespace characters around special characters before usingtokenizedDocument
.
R2019b: tokenizedDocument
detects Korean language
Starting in R2019b, tokenizedDocument
detects the Korean language and sets the 'Language' option to 'ko'
. This changes the default behavior of the addSentenceDetails, addPartOfSpeechDetails, removeStopWords, and normalizeWords functions for Korean document input. This change allows the software to use Korean-specific rules and word lists for analysis. IftokenizedDocument
incorrectly detects text as Korean, then you can specify the language manually by setting the 'Language' name-value pair of tokenizedDocument.
In previous versions, tokenizedDocument
usually detects Korean text as English and sets the 'Language' option to 'en'
. To reproduce this behavior, manually set the 'Language' name-value pair of tokenizedDocument to 'en'
.
R2018b: tokenizedDocument
detects emoticons
Starting in R2018b, tokenizedDocument
, by default, detects emoticon tokens. This behavior makes it easier to analyze text containing emoticons.
In R2017b and R2018a, tokenizedDocument
splits emoticon tokens into multiple tokens. To reproduce this behavior, intokenizedDocument
, specify the'DetectPatterns'
option to be{'email-address','web-address','hashtag','at-mention'}
.
R2018b: tokenDetails
returns token type emoji
for emoji characters
Starting in R2018b, tokenizedDocument detects emoji characters and the tokenDetails function reports these tokens with type"emoji"
. This makes it easier to analyze text containing emoji characters.
In R2018a, tokenDetails reports emoji characters with type "other"
. To find the indices of the tokens with type "emoji"
or"other"
, use the indices idx = tdetails.Type == "emoji" | tdetails.Type == "other"
, where tdetails
is a table of token details.
R2018b: tokenizedDocument
does not split at slash and colon characters between digits
Starting in R2018b, tokenizedDocument
does not split at slash, backslash, or colon characters when they appear between two digits. This behavior can produce better results when tokenizing text containing dates and times.
In previous versions, tokenizedDocument
splits at these characters. To reproduce the behavior, tokenize the text manually or insert whitespace characters around slash, backslash, and colon characters before usingtokenizedDocument
.