RFC 2263: SNMPv3 Applications (original) (raw)

[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

Obsoleted by: 2273 PROPOSED STANDARD

Network Working Group D. Levi Request for Comments: 2263 SNMP Research, Inc. Category: Standards Track P. Meyer Secure Computing Corporation B. Stewart Cisco Systems January 1998

                      SNMPv3 Applications

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1997). All Rights Reserved.

Abstract

This memo describes five types of SNMP applications which make use of an SNMP engine as described in [RFC2261]. The types of application described are Command Generators, Command Responders, Notification Originators, Notification Receivers, and Proxy Forwarders.

This memo also defines MIB modules for specifying targets of management operations, for notification filtering, and for proxy forwarding.

Table of Contents

1 Overview ..................................................... 2 1.1 Command Generator Applications ............................. 3 1.2 Command Responder Applications ............................. 3 1.3 Notification Originator Applications ....................... 3 1.4 Notification Receiver Applications ......................... 3 1.5 Proxy Forwarder Applications ............................... 3 2 Management Targets ........................................... 5 3 Elements Of Procedure ........................................ 6 3.1 Command Generator Applications ............................. 6 3.2 Command Responder Applications ............................. 8 3.3 Notification Originator Applications ....................... 13 3.4 Notification Receiver Applications ......................... 16

Levi, et. al. Standards Track [Page 1]


RFC 2263 SNMPv3 Applications January 1998

3.5 Proxy Forwarder Applications ............................... 18 3.5.1 Request Forwarding ....................................... 19 3.5.1.1 Processing an Incoming Request ......................... 19 3.5.1.2 Processing an Incoming Response ........................ 22 3.5.1.3 Processing an Incoming Report Indication ............... 23 3.5.2 Notification Forwarding .................................. 24 4 The Structure of the MIB Modules ............................. 27 4.1 The Management Target MIB Module ........................... 27 4.1.1 Tag Lists ................................................ 28 4.1.2 Definitions .............................................. 28 4.2 The Notification MIB Module ................................ 41 4.2.1 Definitions .............................................. 42 4.3 The Proxy MIB Module ....................................... 53 4.3.1 Definitions .............................................. 53 5 Identification of Management Targets in Notification Originators ............................................... 59 6 Notification Filtering ....................................... 60 7 Management Target Translation in Proxy Forwarder Applications .............................................. 61 7.1 Management Target Translation for Request Forwarding ....... 61 7.2 Management Target Translation for Notification Forwarding ........................................................... 62 8 Intellectual Property ........................................ 63 9 Acknowledgments .............................................. 64 10 Security Considerations ..................................... 65 11 References .................................................. 65 12 Editors' Address ............................................ 67 A. Trap Configuration Example .................................. 68 B. Full Copyright Statement .................................... 70

1. Overview

This document describes five types of SNMP applications:

   -  Applications which initiate SNMP Get, GetNext, GetBulk, and/or
      Set requests, called 'command generators.'

   -  Applications which respond to SNMP Get, GetNext, GetBulk,
      and/or Set requests, called 'command responders.'

   -  Applications which generate notifications, called
      'notification originators.'

   -  Applications which receive notifications, called 'notification
      receivers.'

   -  Applications which forward SNMP Get, GetNext, GetBulk, and/or
      Set requests or notifications, called 'proxy forwarder.'

Levi, et. al. Standards Track [Page 2]


RFC 2263 SNMPv3 Applications January 1998

Note that there are no restrictions on which types of applications may be associated with a particular SNMP engine. For example, a single SNMP engine may, in fact, be associated with both command generator and command responder applications.

1.1. Command Generator Applications

A command generator application initiates SNMP Get, GetNext, GetBulk, and/or Set requests, as well as processing the response to a request which it generated.

1.2. Command Responder Applications

A command responder application receives SNMP Get, GetNext, GetBulk, and/or Set requests destined for the local system as indicated by the fact that the contextEngineID in the received request is equal to that of the local engine through which the request was received. The command responder application will perform the appropriate protocol operation, using access control, and will generate a response message to be sent to the request's originator.

1.3. Notification Originator Applications

A notification originator application conceptually monitors a system for particular events or conditions, and generates Trap and/or Inform messages based on these events or conditions. A notification originator must have a mechanism for determining where to send messages, and what SNMP version and security parameters to use when sending messages. A mechanism and MIB module for this purpose is provided in this document.

1.4. Notification Receiver Applications

A notification receiver application listens for notification messages, and generates response messages when a message containing an Inform PDU is received.

1.5. Proxy Forwarder Applications

A proxy forwarder application forwards SNMP messages. Note that implementation of a proxy forwarder application is optional. The sections describing proxy (4.5, 5.3, and 8) may be skipped for implementations that do not include a proxy forwarder application.

The term "proxy" has historically been used very loosely, with multiple different meanings. These different meanings include (among others):

Levi, et. al. Standards Track [Page 3]


RFC 2263 SNMPv3 Applications January 1998

(1) the forwarding of SNMP requests to other SNMP entities without regard for what managed object types are being accessed; for example, in order to forward an SNMP request from one transport domain to another, or to translate SNMP requests of one version into SNMP requests of another version;

(2) the translation of SNMP requests into operations of some non-SNMP management protocol; and

(3) support for aggregated managed objects where the value of one managed object instance depends upon the values of multiple other (remote) items of management information.

Each of these scenarios can be advantageous; for example, support for aggregation of management information can significantly reduce the bandwidth requirements of large-scale management activities. However, using a single term to cover multiple different scenarios causes confusion.

To avoid such confusion, this document uses the term "proxy" with a much more tightly defined meaning. The term "proxy" is used in this document to refer to a proxy forwarder application which forwards either SNMP requests, notifications, and responses without regard for what managed objects are contained within requests or notifications. This definition is most closely related to the first definition above. Note, however, that in the SNMP architecture [RFC2261], a proxy forwarder is actually an application, and need not be associated with what is traditionally thought of as an SNMP agent.

Specifically, the distinction between a traditional SNMP agent and a proxy forwarder application is simple:

   -  a proxy forwarder application forwards requests and/or
      notifications to other SNMP engines according to the context,
      and irrespective of the specific managed object types being
      accessed, and forwards the response to such previously
      forwarded messages back to the SNMP engine from which the
      original message was received;

   -  in contrast, the command responder application that is part of
      what is traditionally thought of as an SNMP agent, and which
      processes SNMP requests according to the (names of the)
      individual managed object types and instances being accessed,
      is NOT a proxy forwarder application from the perspective of
      this document.

Levi, et. al. Standards Track [Page 4]


RFC 2263 SNMPv3 Applications January 1998

Thus, when a proxy forwarder application forwards a request or notification for a particular contextEngineID / contextName pair, not only is the information on how to forward the request specifically associated with that context, but the proxy forwarder application has no need of a detailed definition of a MIB view (since the proxy forwarder application forwards the request irrespective of the managed object types).

In contrast, a command responder application must have the detailed definition of the MIB view, and even if it needs to issue requests to other entities, via SNMP or otherwise, that need is dependent on the individual managed object instances being accessed (i.e., not only on the context).

Note that it is a design goal of a proxy forwarder application to act as an intermediary between the endpoints of a transaction. In particular, when forwarding Inform requests, the associated response is forwarded when it is received from the target to which the Inform request was forwarded, rather than generating a response immediately when an Inform request is received.

2. Management Targets

Some types of applications (notification generators and proxy forwarders in particular) require a mechanism for determining where and how to send generated messages. This document provides a mechanism and MIB module for this purpose. The set of information that describes where and how to send a message is called a 'Management Target', and consists of two kinds of information:

   -  Destination information, consisting of a transport domain and
      a transport address.  This is also termed a transport
      endpoint.

   -  SNMP parameters, consisting of message processing model,
      security model, security level, and security name information.

The SNMP-TARGET-MIB module described later in this document contains one table for each of these types of information. There can be a many-to-many relationship in the MIB between these two types of information. That is, there may be multiple transport endpoints associated with a particular set of SNMP parameters, or a particular transport endpoint may be associated with several sets of SNMP parameters.

Levi, et. al. Standards Track [Page 5]


RFC 2263 SNMPv3 Applications January 1998

3. Elements Of Procedure

The following sections describe the procedures followed by each type of application when generating messages for transmission or when processing received messages. Applications communicate with the Dispatcher using the abstract service interfaces defined in [RFC2261].

3.1. Command Generator Applications

A command generator initiates an SNMP request by calling the Dispatcher using the following abstract service interface:

   statusInformation =              -- sendPduHandle if success
                                    -- errorIndication if failure
     sendPdu(
     IN   transportDomain           -- transport domain to be used
     IN   transportAddress          -- destination network address
     IN   messageProcessingModel    -- typically, SNMP version
     IN   securityModel             -- Security Model to use
     IN   securityName              -- on behalf of this principal
     IN   securityLevel             -- Level of Security requested
     IN   contextEngineID           -- data from/at this entity
     IN   contextName               -- data from/in this context
     IN   pduVersion                -- the version of the PDU
     IN   PDU                       -- SNMP Protocol Data Unit
     IN   expectResponse            -- TRUE or FALSE
          )

Where:

   -  The transportDomain is that of the destination of the message.

   -  The transportAddress is that of the destination of the
      message.

   -  The messageProcessingModel indicates which Message Processing
      Model the application wishes to use.

   -  The securityModel is the security model that the application
      wishes to use.

   -  The securityName is the security model independent name for
      the principal on whose behalf the application wishes the
      message is to be generated.

   -  The securityLevel is the security level that the application
      wishes to use.

Levi, et. al. Standards Track [Page 6]


RFC 2263 SNMPv3 Applications January 1998

   -  The contextEngineID is provided by the command generator if it
      wishes to explicitly specify the location of the management
      information it is requesting.

   -  The contextName is provided by the command generator if it
      wishes to explicitly specify the local context name for the
      management information it is requesting.

   -  The pduVersion indicates the version of the PDU to be sent.

   -  The PDU is a value constructed by the command generator
      containing the management operation that the command generator
      wishes to perform.

   -  The expectResponse argument indicates that a response is
      expected.

The result of the sendPdu interface indicates whether the PDU was successfully sent. If it was successfully sent, the returned value will be a sendPduHandle. The command generator should store the sendPduHandle so that it can correlate a response to the original request.

The Dispatcher is responsible for delivering the response to a particular request to the correct command generator application. The abstract service interface used is:

   processResponsePdu(              -- process Response PDU
     IN   messageProcessingModel    -- typically, SNMP version
     IN   securityModel             -- Security Model in use
     IN   securityName              -- on behalf of this principal
     IN   securityLevel             -- Level of Security
     IN   contextEngineID           -- data from/at this SNMP entity
     IN   contextName               -- data from/in this context
     IN   pduVersion                -- the version of the PDU
     IN   PDU                       -- SNMP Protocol Data Unit
     IN   statusInformation         -- success or errorIndication
     IN   sendPduHandle             -- handle from sendPDU
          )

Where:

   -  The messageProcessingModel is the value from the received
      response.

   -  The securityModel is the value from the received response.

   -  The securityName is the value from the received response.

Levi, et. al. Standards Track [Page 7]


RFC 2263 SNMPv3 Applications January 1998

   -  The securityLevel is the value from the received response.

   -  The contextEngineID is the value from the received response.

   -  The contextName is the value from the received response.

   -  The pduVersion indicates the version of the PDU in the
      received response.

   -  The PDU is the value from the received response.

   -  The statusInformation indicates success or failure in
      receiving the response.

   -  The sendPduHandle is the value returned by the sendPdu call
      which generated the original request to which this is a
      response.

The procedure when a command generator receives a message is as follows:

(1) If the received values of messageProcessingModel, securityModel, securityName, contextEngineID, contextName, and pduVersion are not all equal to the values used in the original request, the response is discarded.

(2) The operation type, request-id, error-status, error-index, and variable-bindings are extracted from the PDU and saved. If the request-id is not equal to the value used in the original request, the response is discarded.

(3) At this point, it is up to the application to take an appropriate action. The specific action is implementation dependent. If the statusInformation indicates that the request failed, an appropriate action might be to attempt to transmit the request again, or to notify the person operating the application that a failure occurred.

3.2. Command Responder Applications

Before a command responder application can process messages, it must first associate itself with an SNMP engine. The abstract service interface used for this purpose is:

Levi, et. al. Standards Track [Page 8]


RFC 2263 SNMPv3 Applications January 1998

   statusInformation =        -- success or errorIndication
     registerContextEngineID(
     IN   contextEngineID     -- take responsibility for this one
     IN   pduType             -- the pduType(s) to be registered
          )

Where:

   -  The statusInformation indicates success or failure of the
      registration attempt.

   -  The contextEngineID is equal to the snmpEngineID of the SNMP
      engine with which the command responder is registering.

   -  The pduType indicates a Get, GetNext, GetBulk, or Set pdu.

Note that if another command responder application is already registered with an SNMP engine, any further attempts to register with the same contextEngineID and pduType will be denied. This implies that separate command responder applications could register separately for the various pdu types. However, in practice this is undesirable, and only a single command responder application should be registered with an SNMP engine at any given time.

A command responder application can disassociate with an SNMP engine using the following abstract service interface:

   unregisterContextEngineID(
     IN   contextEngineID     -- give up responsibility for this one
     IN   pduType             -- the pduType(s) to be unregistered
          )

Where:

   -  The contextEngineID is equal to the snmpEngineID of the SNMP
      engine with which the command responder is cancelling the
      registration.

   -  The pduType indicates a Get, GetNext, GetBulk, or Set pdu.

Once the command responder has registered with the SNMP engine, it waits to receive SNMP messages. The abstract service interface used for receiving messages is:

processPdu( -- process Request/Notification PDU IN messageProcessingModel -- typically, SNMP version IN securityModel -- Security Model in use IN securityName -- on behalf of this principal

Levi, et. al. Standards Track [Page 9]


RFC 2263 SNMPv3 Applications January 1998

 IN   securityLevel            -- Level of Security
 IN   contextEngineID          -- data from/at this SNMP entity
 IN   contextName              -- data from/in this context
 IN   pduVersion               -- the version of the PDU
 IN   PDU                      -- SNMP Protocol Data Unit
 IN   maxSizeResponseScopedPDU -- maximum size of the Response PDU
 IN   stateReference           -- reference to state information
      )                        -- needed when sending a response

Where:

   -  The messageProcessingModel indicates which Message Processing
      Model received and processed the message.

   -  The securityModel is the value from the received message.

   -  The securityName is the value from the received message.

   -  The securityLevel is the value from the received message.

   -  The contextEngineID is the value from the received message.

   -  The contextName is the value from the received message.

   -  The pduVersion indicates the version of the PDU in the
      received message.

   -  The PDU is the value from the received message.

   -  The maxSizeResponseScopedPDU is the maximum allowable size of
      a ScopedPDU containing a Response PDU (based on the maximum
      message size that the originator of the message can accept).

   -  The stateReference is a value which references cached
      information about each received request message.  This value
      must be returned to the Dispatcher in order to generate a
      response.

The procedure when a message is received is as follows.

(1) The operation type is determined from the ASN.1 tag value associated with the PDU parameter. The operation type should always be one of the types previously registered by the application.

(2) The request-id is extracted from the PDU and saved.

Levi, et. al. Standards Track [Page 10]


RFC 2263 SNMPv3 Applications January 1998

(3) If the SNMPv2 operation type is GetBulk, the non-repeaters and max-repetitions values are extracted from the PDU and saved.

(4) The variable-bindings are extracted from the PDU and saved.

(5) The management operation represented by the SNMPv2 operation type is performed with respect to the relevant MIB view within the context named by the contextName, according to the procedures set forth in [RFC1905]. The relevant MIB view is determined by the securityLevel, securityModel, contextName, securityName, and SNMPv2 operation type. To determine whether a particular object instance is within the relevant MIB view, the following abstract service interface is called:

     statusInformation =      -- success or errorIndication
       isAccessAllowed(
       IN   securityModel     -- Security Model in use
       IN   securityName      -- principal who wants to access
       IN   securityLevel     -- Level of Security
       IN   viewType          -- read, write, or notify view
       IN   contextName       -- context containing variableName
       IN   variableName      -- OID for the managed object
            )

 Where:

   -  The securityModel is the value from the received message.

   -  The securityName is the value from the received message.

   -  The securityLevel is the value from the received message.

   -  The viewType indicates whether the PDU type is a read or write
      operation.

   -  The contextName is the value from the received message.

   -  The variableName is the object instance of the variable for
      which access rights are to be checked.

 Normally, the result of the management operation will be a new PDU
 value, and processing will continue in step (6) below.  However, at
 any time during the processing of the management operation:

   -  If the isAccessAllowed ASI returns a noSuchView,
      noAccessEntry, or noGroupName error, processing of the
      management operation is halted, a PDU value is contructed
      using the values from the originally received PDU, but

Levi, et. al. Standards Track [Page 11]


RFC 2263 SNMPv3 Applications January 1998

      replacing the error_status with an authorizationError code,
      and error_index value of 0, and control is passed to step (6)
      below.

   -  If the isAccessAllowed ASI returns an otherError, processing
      of the management operation is halted, a different PDU value
      is contructed using the values from the originally received
      PDU, but replacing the error_status with a genError code, and
      control is passed to step (6) below.

   -  If the isAccessAllowed ASI returns a noSuchContext error,
      processing of the management operation is halted, no result
      PDU is generated, the snmpUnknownContexts counter is
      incremented, and control is passed to step (6) below.

   -  If the context named by the contextName parameter is
      unavailable, processing of the management operation is halted,
      no result PDU is generated, the snmpUnavailableContexts
      counter is incremented, and control is passed to step (6)
      below.

(6) The Dispatcher is called to generate a response or report message. The abstract service interface is:

 returnResponsePdu(
   IN   messageProcessingModel   -- typically, SNMP version
   IN   securityModel            -- Security Model in use
   IN   securityName             -- on behalf of this principal
   IN   securityLevel            -- same as on incoming request
   IN   contextEngineID          -- data from/at this SNMP entity
   IN   contextName              -- data from/in this context
   IN   pduVersion               -- the version of the PDU
   IN   PDU                      -- SNMP Protocol Data Unit
   IN   maxSizeResponseScopedPDU -- maximum size of the Response PDU
   IN   stateReference           -- reference to state information
                                 -- as presented with the request
   IN   statusInformation        -- success or errorIndication
        )                        -- error counter OID/value if error

 Where:

   -  The messageProcessingModel is the value from the processPdu
      call.

   -  The securityModel is the value from the processPdu call.

   -  The securityName is the value from the processPdu call.

Levi, et. al. Standards Track [Page 12]


RFC 2263 SNMPv3 Applications January 1998

   -  The securityLevel is the value from the processPdu call.

   -  The contextEngineID is the value from the processPdu call.

   -  The contextName is the value from the processPdu call.

   -  The pduVersion indicates the version of the PDU to be
      returned.  If no result PDU was generated, the pduVersion is
      an undefined value.

   -  The PDU is the result generated in step (5) above.  If no
      result PDU was generated, the PDU is an undefined value.

   -  The maxSizeResponseScopedPDU is a local value indicating the
      maximum size of a ScopedPDU that the application can accept.

   -  The stateReference is the value from the processPdu call.

   -  The statusInformation either contains an indication that no
      error occurred and that a response should be generated, or
      contains an indication that an error occurred along with the
      OID and counter value of the appropriate error counter object.

Note that a command responder application should always call the returnResponsePdu abstract service interface, even in the event of an error such as a resource allocation error. In the event of such an error, the PDU value passed to returnResponsePdu should contain appropriate values for errorStatus and errorIndex.

3.3. Notification Originator Applications

A notification originator application generates SNMP notification messages. A notification message may, for example, contain an SNMPv2-Trap PDU or an Inform PDU. However, a particular implementation is not required to be capable of generating both types of messages.

Notification originator applications require a mechanism for identifying the management targets to which notifications should be sent. The particular mechanism used is implementation dependent. However, if an implementation makes the configuration of management targets SNMP manageable, it MUST use the SNMP-TARGET-MIB module described in this document.

When a notification originator wishes to generate a notification, it must first determine in which context the information to be conveyed in the notification exists, i.e., it must determine the contextEngineID and contextName. It must then determine the set of

Levi, et. al. Standards Track [Page 13]


RFC 2263 SNMPv3 Applications January 1998

management targets to which the notification should be sent. The application must also determine, for each management target, whether the notification message should contain an SNMPv2-Trap PDU or Inform PDU, and if it is to contain an Inform PDU, the number of retries and retransmission algorithm.

The mechanism by which a notification originator determines this information is implementation dependent. Once the application has determined this information, the following procedure is performed for each management target:

(1) Any appropriate filtering mechanisms are applied to determine whether the notification should be sent to the management target. If such filtering mechanisms determine that the notification should not be sent, processing continues with the next management target. Otherwise,

(2) The appropriate set of variable-bindings is retrieved from local MIB instrumentation within the relevant MIB view. The relevant MIB view is determined by the securityLevel, securityModel, contextName, and securityName of the management target. To determine whether a particular object instance is within the relevant MIB view, the isAccessAllowed abstract service interface is used, in the same manner as described in the preceding section. If the statusInformation returned by isAccessAllowed does not indicate accessAllowed, the notification is not sent to the management target.

(3) A PDU is constructed using a locally unique request-id value, an operation type of SNMPv2-Trap or Inform, an error-status and error-index value of 0, and the variable-bindings supplied previously in step (2).

(4) If the notification contains an SNMPv2-Trap PDU, the Dispatcher is called using the following abstract service interface:

     statusInformation =              -- sendPduHandle if success
                                      -- errorIndication if failure
       sendPdu(
       IN   transportDomain           -- transport domain to be used
       IN   transportAddress          -- destination network address
       IN   messageProcessingModel    -- typically, SNMP version
       IN   securityModel             -- Security Model to use
       IN   securityName              -- on behalf of this principal
       IN   securityLevel             -- Level of Security requested
       IN   contextEngineID           -- data from/at this entity
       IN   contextName               -- data from/in this context
       IN   pduVersion                -- the version of the PDU

Levi, et. al. Standards Track [Page 14]


RFC 2263 SNMPv3 Applications January 1998

       IN   PDU                       -- SNMP Protocol Data Unit
       IN   expectResponse            -- TRUE or FALSE
            )

 Where:

   -  The transportDomain is that of the management target.

   -  The transportAddress is that of the management target.

   -  The messageProcessingModel is that of the management target.

   -  The securityModel is that of the management target.

   -  The securityName is that of the management target.

   -  The securityLevel is that of the management target.

   -  The contextEngineID is the value originally determined for the
      notification.

   -  The contextName is the value originally determined for the
      notification.

   -  The pduVersion is the version of the PDU to be sent.

   -  The PDU is the value constructed in step (3) above.

   -  The expectResponse argument indicates that no response is
      expected.

 Otherwise,

(5) If the notification contains an Inform PDU, then:

  a)  The Dispatcher is called using the sendPdu abstract service
      interface as described in step (4) above, except that the
      expectResponse argument indicates that a response is expected.

  b)   The application caches information about the management
      target.

  c)  If a response is received within an appropriate time interval
      from the transport endpoint of the management target, the
      notification is considered acknowledged and the cached
      information is deleted.  Otherwise,

Levi, et. al. Standards Track [Page 15]


RFC 2263 SNMPv3 Applications January 1998

  d)  If a response is not received within an appropriate time
      period, or if a report indication is received, information
      about the management target is retrieved from the cache, and
      steps a) through d) are repeated.  The number of times these
      steps are repeated is equal to the previously determined retry
      count.  If this retry count is exceeded, the acknowledgement
      of the notification is considered to have failed, and
      processing of the notification for this management target is
      halted.

Responses to Inform PDU notifications will be received via the processResponsePDU abstract service interface.

3.4. Notification Receiver Applications

Notification receiver applications receive SNMP Notification messages from the Dispatcher. Before any messages can be received, the notification receiver must register with the Dispatcher using the registerContextEngineID abstract service interface. The parameters used are:

   -  The contextEngineID is an undefined 'wildcard' value.
      Notifications are delivered to a registered notification
      receiver regardless of the contextEngineID contained in the
      notification message.

   -  The pduType indicates the type of notifications that the
      application wishes to receive (for example, SNMPv2-Trap PDUs
      or Inform PDUs).

Once the notification receiver has registered with the Dispatcher, messages are received using the processPdu abstract service interface. Parameters are:

   -  The messageProcessingModel indicates which Message Processing
      Model received and processed the message.

   -  The securityModel is the value from the received message.

   -  The securityName is the value from the received message.

   -  The securityLevel is the value from the received message.

   -  The contextEngineID is the value from the received message.

   -  The contextName is the value from the received message.

Levi, et. al. Standards Track [Page 16]


RFC 2263 SNMPv3 Applications January 1998

   -  The pduVersion indicates the version of the PDU in the
      received message.

   -  The PDU is the value from the received message.

   -  The maxSizeResponseScopedPDU is the maximum allowable size of
      a ScopedPDU containing a Response PDU (based on the maximum
      message size that the originator of the message can accept).

   -  If the message contains an SNMPv2-Trap PDU, the stateReference
      is undefined and unused.  Otherwise, the stateReference is a
      value which references cached information about the
      notification.  This value must be returned to the Dispatcher
      in order to generate a response.

When an SNMPv2-Trap PDU is delivered to a notification receiver application, it first extracts the SNMP operation type, request-id, error-status, error-index, and variable-bindings from the PDU. After this, processing depends on the particular implementation.

When an Inform PDU is received, the notification receiver application follows the following procedure:

(1) The SNMPv2 operation type, request-id, error-status, error-index, and variable-bindings are extracted from the PDU.

(2) A Response PDU is constructed using the extracted request-id and variable-bindings, and with error-status and error-index both set to 0.

(3) The Dispatcher is called to generate a response message using the returnResponsePdu abstract service interface. Parameters are:

   -  The messageProcessingModel is the value from the processPdu
      call.

   -  The securityModel is the value from the processPdu call.

   -  The securityName is the value from the processPdu call.

   -  The securityLevel is the value from the processPdu call.

   -  The contextEngineID is the value from the processPdu call.

   -  The contextName is the value from the processPdu call.

   -  The pduVersion indicates the version of the PDU to be
      returned.

Levi, et. al. Standards Track [Page 17]


RFC 2263 SNMPv3 Applications January 1998

   -  The PDU is the result generated in step (2) above.

   -  The maxSizeResponseScopedPDU is a local value indicating the
      maximum size of a ScopedPDU that the application can accept.

   -  The stateReference is the value from the processPdu call.

   -  The statusInformation indicates that no error occurred and
      that a response should be generated.

3.5. Proxy Forwarder Applications

A proxy forwarder application deals with forwarding SNMP messages. There are four basic types of messages which a proxy forwarder application may need to forward. These are grouped according to the PDU type contained in a message, or according to whether a report indication is contained in the message. The four basic types of messages are:

   -  Those containing PDU types which were generated by a command
      generator application (for example, Get, GetNext, GetBulk, and
      Set PDU types).  These deal with requesting or modifying
      information located within a particular context.

   -  Those containing PDU types which were generated by a
      notification originator application (for example, SNMPv2-Trap
      and Inform PDU types).  These deal with notifications
      concerning information located within a particular context.

   -  Those containing a Response PDU type.  Forwarding of Response
      PDUs always occurs as a result of receiving a response to a
      previously forwarded message.

   -  Those containing a report indication.  Forwarding of report
      indications always occurs as a result of receiving a report
      indication for a previously forwarded message.

For the first type, the proxy forwarder's role is to deliver a request for management information to an SNMP engine which is "closer" or "downstream in the path" to the SNMP engine which has access to that information, and to deliver the response containing the information back to the SNMP engine from which the request was received. The context information in a request is used to determine which SNMP engine has access to the requested information, and this is used to determine where and how to forward the request.

Levi, et. al. Standards Track [Page 18]


RFC 2263 SNMPv3 Applications January 1998

For the second type, the proxy forwarder's role is to determine which SNMP engines should receive notifications about management information from a particular location. The context information in a notification message determines the location to which the information contained in the notification applies. This is used to determine which SNMP engines should receive notification about this information.

For the third type, the proxy forwarder's role is to determine which previously forwarded request or notification (if any) the response matches, and to forward the response back to the initiator of the request or notification.

For the fourth type, the proxy forwarder's role is to determine which previously forwarded request or notification (if any) the report indication matches, and to forward the report indication back to the initiator of the request or notification.

When forwarding messages, a proxy forwarder application must perform a translation of incoming management target information into outgoing management target information. How this translation is performed is implementation specific. In many cases, this will be driven by a preconfigured translation table. If a proxy forwarder application makes the contents of this table SNMP manageable, it MUST use the SNMP-PROXY-MIB module defined in this document.

3.5.1. Request Forwarding

There are two phases for request forwarding. First, the incoming request needs to be passed through the proxy application. Then, the resulting response needs to be passed back. These phases are described in the following two sections.

3.5.1.1. Processing an Incoming Request

A proxy forwarder application that wishes to forward request messages must first register with the Dispatcher using the registerContextEngineID abstract service interface. The proxy forwarder must register each contextEngineID for which it wishes to forward messages, as well as for each pduType. Note that as the configuration of a proxy forwarder is changed, the particular contextEngineID values for which it is forwarding may change. The proxy forwarder should call the registerContextEngineID and unregisterContextEngineID abstract service interfaces as needed to reflect its current configuration.

Levi, et. al. Standards Track [Page 19]


RFC 2263 SNMPv3 Applications January 1998

A proxy forwarder application should never attempt to register a value of contextEngineID which is equal to the snmpEngineID of the SNMP engine to which the proxy forwarder is associated.

Once the proxy forwarder has registered for the appropriate contextEngineId values, it can start processing messages. The following procedure is used:

(1) A message is received using the processPdu abstract service interface. The incoming management target information received from the processPdu interface is translated into outgoing management target information. Note that this translation may vary for different values of contextEngineID and/or contextName. The translation should result in a single management target.

(2) If appropriate outgoing management target information cannot be found, the proxy forwarder increments the snmpProxyDrops counter [RFC1907], and then calls the Dispatcher using the returnResponsePdu abstract service interface. Parameters are:

   -  The messageProcessingModel is the value from the processPdu
      call.

   -  The securityModel is the value from the processPdu call.

   -  The securityName is the value from the processPdu call.

   -  The securityLevel is the value from the processPdu call.

   -  The contextEngineID is the value from the processPdu call.

   -  The contextName is the value from the processPdu call.

   -  The pduVersion is the value from the processPdu call.

   -  The PDU is an undefined value.

   -  The maxSizeResponseScopedPDU is a local value indicating the
      maximum size of a ScopedPDU that the application can accept.

   -  The stateReference is the value from the processPdu call.

   -  The statusInformation indicates that an error occurred and
      includes the OID and value of the snmpProxyDrops object.

 Processing of the message stops at this point.  Otherwise,

Levi, et. al. Standards Track [Page 20]


RFC 2263 SNMPv3 Applications January 1998

(3) A new PDU is constructed. A unique value of request-id should be used in the new PDU (this value will enable a subsequent response message to be correlated with this request). The remainder of the new PDU is identical to the received PDU, unless the incoming SNMP version is SNMPv2 or SNMPv3 and the outgoing SNMP version is SNMPv1, in which case the proxy forwarder must apply the translation rules as documented in [RFC1908].

(4) The proxy forwarder calls the Dispatcher to generate the forwarded message, using the sendPdu abstract service interface. The parameters are:

   -  The transportDomain is that of the outgoing management target.

   -  The transportAddress is that of the outgoing management
      target.

   -  The messageProcessingModel is that of the outgoing management
      target.

   -  The securityModel is that of the outgoing management target.

   -  The securityName is that of the outgoing management target.

   -  The securityLevel is that of the outgoing management target.

   -  The contextEngineID is the value originally received.

   -  The contextName is the value originally received.

   -  The pduVersion is the version of the PDU to be sent.

   -  The PDU is the value constructed in step (3) above.

   -  The expectResponse argument indicates that a response is
      expected.  If the sendPdu call is unsuccessful, the proxy
      forwarder performs the steps described in (2) above.
      Otherwise:

(5) The proxy forwarder caches the following information in order to match an incoming response to the forwarded request:

   -  The sendPduHandle returned from the call to sendPdu,

   -  The request-id from the received PDU.

   -  the contextEngineID,

Levi, et. al. Standards Track [Page 21]


RFC 2263 SNMPv3 Applications January 1998

   -  the contextName,

   -  the stateReference,

   -  the incoming management target information,

   -  the outgoing management information,

   -  any other information needed to match an incoming response to
      the forwarded request.

 If this information cannot be cached (possibly due to a lack of
 resources), the proxy forwarder performs the steps described in (2)
 above.  Otherwise:

(6) Processing of the request stops until a response to the forwarded request is received, or until an appropriate time interval has expired. If this time interval expires before a response has been received, the cached information about this request is removed.

3.5.1.2. Processing an Incoming Response

A proxy forwarder follows the following procedure when an incoming response is received:

(1) The incoming response is received using the processResponsePdu interface. The proxy forwarder uses the received parameters to locate an entry in its cache of pending forwarded requests. This is done by matching the received parameters with the cached values of sendPduHandle, contextEngineID, contextName, outgoing management target information, and the request-id contained in the received PDU (the proxy forwarder must extract the request-id for this purpose). If an appropriate cache entry cannot be found, processing of the response is halted. Otherwise:

(2) The cache information is extracted, and removed from the cache.

(3) A new Response PDU is constructed, using the request-id value from the original forwarded request (as extracted from the cache). All other values are identical to those in the received Response PDU.

(4) If the incoming SNMP version is SNMPv1 and the outgoing SNMP version is SNMPv2 or SNMPv3, the proxy forwarder must apply the translation rules documented in [RFC1908].

(5) The proxy forwarder calls the Dispatcher using the returnResponsePdu abstract service interface. Parameters are:

Levi, et. al. Standards Track [Page 22]


RFC 2263 SNMPv3 Applications January 1998

   -  The messageProcessingModel indicates the Message Processing
      Model by which the original incoming message was processed.

   -  The securityModel is that of the original incoming management
      target extracted from the cache.

   -  The securityName is that of the original incoming management
      target extracted from the cache.

   -  The securityLevel is that of the original incoming management
      target extracted from the cache.

   -  The contextEngineID is the value extracted from the cache.

   -  The contextName is the value extracted from the cache.

   -  The pduVersion indicates the version of the PDU to be
      returned.

   -  The PDU is the (possibly translated) Response PDU.

   -  The maxSizeResponseScopedPDU is a local value indicating the
      maximum size of a ScopedPDU that the application can accept.

   -  The stateReference is the value extracted from the cache.

   -  The statusInformation indicates that no error occurred and
      that a Response PDU message should be generated.

3.5.1.3. Processing an Incoming Report Indication

A proxy forwarder follows the following procedure when an incoming report indication is received:

(1) The incoming report indication is received using the processResponsePdu interface. The proxy forwarder uses the received parameters to locate an entry in its cache of pending forwarded requests. This is done by matching the received parameters with the cached values of sendPduHandle. If an appropriate cache entry cannot be found, processing of the report indication is halted. Otherwise:

(2) The cache information is extracted, and removed from the cache.

(3) If the original incoming management target information indicates SNMPv1, processing of the report indication is halted.

Levi, et. al. Standards Track [Page 23]


RFC 2263 SNMPv3 Applications January 1998

(4) The proxy forwarder calls the Dispatcher using the returnResponsePdu abstract service interface. Parameters are:

   -  The messageProcessingModel indicates the Message Processing
      Model by which the original incoming message was processed.

   -  The securityModel is that of the original incoming management
      target extracted from the cache.

   -  The securityName is that of the original incoming management
      target extracted from the cache.

   -  The securityLevel is that of the original incoming management
      target extracted from the cache.

   -  The contextEngineID is the value extracted from the cache.

   -  The contextName is the value extracted from the cache.

   -  The pduVersion indicates the version of the PDU to be
      returned.

   -  The PDU is unused.

   -  The maxSizeResponseScopedPDU is a local value indicating the
      maximum size of a ScopedPDU that the application can accept.

   -  The stateReference is the value extracted from the cache.

   -  The statusInformation contain the contextEngineID,
      contextName, counter OID, and counter value received in the
      report indication.

3.5.2. Notification Forwarding

A proxy forwarder receives notifications in the same manner as a notification receiver application, using the processPdu abstract service interface. The following procedure is used when a notification is received:

(1) The incoming management target information received from the processPdu interface is translated into outgoing management target information. Note that this translation may vary for different values of contextEngineId and/or contextName. The translation may result in multiple management targets.

Levi, et. al. Standards Track [Page 24]


RFC 2263 SNMPv3 Applications January 1998

(2) If appropriate outgoing management target information cannot be found and the notification was a Trap, processing of the notification is halted. If appropriate outgoing management target information cannot be found and the notification was an Inform, the proxy forwarder increments the snmpProxyDrops object, and calls the Dispatcher using the returnResponsePdu abstract service interface.

 The parameters are:

   -  The messageProcessingModel is the received value.

   -  The securityModel is the received value.

   -  The securityName is the received value.

   -  The securityLevel is the received value.

   -  The contextEngineID is the received value.

   -  The contextName is the received value.

   -  The pduVersion is the received value.

   -  The PDU is an undefined and unused value.

   -  The maxSizeResponseScopedPDU is a local value indicating the
      maximum size of a ScopedPDU that the application can accept.

   -  The stateReference is the received value.

   -  The statusInformation indicates that an error occurred and
      that a Report message should be generated.

 Processing of the message stops at this point.  Otherwise,

(3) The proxy forwarder generates a notification using the procedures described in the preceding section on Notification Originators, with the following exceptions:

   -  The contextEngineID and contextName values from the original
      received notification are used.

   -  The outgoing management targets previously determined are
      used.

   -  No filtering mechanisms are applied.

Levi, et. al. Standards Track [Page 25]


RFC 2263 SNMPv3 Applications January 1998

   -  The variable-bindings from the original received notification
      are used, rather than retrieving variable-bindings from local
      MIB instrumentation.  In particular, no access-control is
      applied to these variable-bindings.

   -  If for any of the outgoing management targets, the incoming
      SNMP version is SNMPv1 and the outgoing SNMP version is SNMPv2
      or SNMPv3, the proxy forwarder must apply the translation
      rules as documented in [[RFC1908](./rfc1908)].

   -  If for any of the outgoing management targets, the incoming
      SNMP version is SNMPv2 or SNMPv3, and the outgoing SNMP
      version is SNMPv1, this outgoing management target is not used
      when generating the forwarded notifications.

(4) If the original received notification contains an SNMPv2-Trap PDU, processing of the notification is now completed. Otherwise, the original received notification must contain an Inform PDU, and processing continues.

(5) If the forwarded notifications included any Inform PDUs, processing continues when the procedures described in the section for Notification Originators determine that either:

   -  None of the generated notifications containing Inform PDUs
      have been successfully acknowledged within the longest of the
      time intervals, in which case processing of the original
      notification is halted, or,

   -  At least one of the generated notifications containing Inform
      PDUs is successfully acknowledged, in which case a response to
      the original received notification containing an Inform PDU is
      generated as described in the following steps.

(6) A Response PDU is constructed, using the values of request-id and variable-bindings from the original received Inform PDU, and error-status and error-index values of 0.

(7) The Dispatcher is called using the returnResponsePdu abstract service interface. Parameters are:

   -  The messageProcessingModel is the originally received value.

   -  The securityModel is the originally received value.

   -  The securityName is the originally received value.

   -  The securityLevel is the originally received value.

Levi, et. al. Standards Track [Page 26]


RFC 2263 SNMPv3 Applications January 1998

   -  The contextEngineID is the originally received value.

   -  The contextName is the originally received value.

   -  The pduVersion indicates the version of the PDU constructed in
      step (6) above.

   -  The PDU is the value constructed in step (6) above.

   -  The maxSizeResponseScopedPDU is a local value indicating the
      maximum size of a ScopedPDU that the application can accept.

   -  The stateReference is the originally received value.

   -  The statusInformation indicates that no error occurred and
      that a Response PDU message should be generated.

4. The Structure of the MIB Modules

There are three separate MIB modules described in this document, the management target MIB, the notification MIB, and the proxy MIB. The following sections describe the structure of these three MIB modules.

The use of these MIBs by particular types of applications is described later in this document:

   -  The use of the management target MIB and the notification MIB
      in notification originator applications is described in
      [section 6](#section-6).

   -  The use of the notification MIB for filtering notifications in
      notification originator applications is described in [section](#section-7)
      [7](#section-7).

   -  The use of the management target MIB and the proxy MIB in
      proxy forwarding applications is described in [section 8](#section-8).

4.1. The Management Target MIB Module

The SNMP-TARGET-MIB module contains objects for defining management targets. It consists of two tables and conformance/compliance statements.

The first table, the snmpTargetAddrTable, contains information about transport domains and addresses. It also contains an object, snmpTargetAddrTagList, which provides a mechanism for grouping entries.

Levi, et. al. Standards Track [Page 27]


RFC 2263 SNMPv3 Applications January 1998

The second table, the snmpTargetParamsTable, contains information about SNMP version and security information to be used when sending messages to particular transport domains and addresses.

4.1.1. Tag Lists

The snmpTargetAddrTagList object is used for grouping entries in the snmpTargetAddrTable. The value of this object contains a list of tag values which are used to select target addresses to be used for a particular operation.

A tag value, which may also be used in MIB objects other than snmpTargetAddrTagList, is an arbitrary string of octets, but may not contain a delimiter character. Delimiter characters are defined to be one of the following characters:

   -  An ASCII space character (0x20).

   -  An ASCII TAB character (0x09).

   -  An ASCII carriage return (CR) character (0x0D).

   -  An ASCII line feed (LF) character (0x0B).

In addition, a tag value may not have a zero length. Generally, a particular MIB object may contain either

   -  a single tag value, in which case the value of the MIB object
      may not contain a delimiter character, or:

   -  a MIB object may contain a list of tag values, separated by
      single delimiter characters.

For a list of tag values, these constraints imply certain restrictions on the value of a MIB object:

   -  There cannot be a leading or trailing delimiter character.

   -  There cannot be multiple adjacent delimiter charaters.

4.1.2. Definitions

SNMP-TARGET-MIB DEFINITIONS ::= BEGIN

IMPORTS TEXTUAL-CONVENTION, MODULE-IDENTITY, OBJECT-TYPE,

Levi, et. al. Standards Track [Page 28]


RFC 2263 SNMPv3 Applications January 1998

   snmpModules,
   Integer32
       FROM SNMPv2-SMI

   TDomain,
   TAddress,
   TimeInterval,
   RowStatus,
   StorageType,
   TestAndIncr
       FROM SNMPv2-TC
   SnmpSecurityModel,
   SnmpMessageProcessingModel,
   SnmpSecurityLevel,
   SnmpAdminString
       FROM SNMP-FRAMEWORK-MIB

   OBJECT-GROUP
       FROM SNMPv2-CONF;

snmpTargetMIB MODULE-IDENTITY LAST-UPDATED "9711210000Z" ORGANIZATION "IETF SNMPv3 Working Group" CONTACT-INFO "WG-email: snmpv3@tis.com Subscribe: majordomo@tis.com In message body: subscribe snmpv3

        Chair:      Russ Mundy
                    Trusted Information Systems
        Postal:     3060 Washington Rd
                    Glenwood MD 21738
                    USA
        Email:      mundy@tis.com
        Phone:      +1-301-854-6889

        Co-editor:  David B. Levi
                    SNMP Research, Inc.
        Postal:     3001 Kimberlin Heights Road
                    Knoxville, TN 37920-9716
        E-mail:     levi@snmp.com
        Phone:      +1 423 573 1434

        Co-editor:  Paul Meyer
                    Secure Computing Corporation
        Postal:     2675 Long Lake Road
                    Roseville, MN 55113
        E-mail:     paul_meyer@securecomputing.com

Levi, et. al. Standards Track [Page 29]


RFC 2263 SNMPv3 Applications January 1998

        Phone:      +1 612 628 1592

        Co-editor:  Bob Stewart
                    Cisco Systems, Inc.
        Postal:     170 West Tasman Drive
                    San Jose, CA 95134-1706
        E-mail:     bstewart@cisco.com
        Phone:      +1 603 654 6923"
   DESCRIPTION
       "This MIB module defines MIB objects which provide
        mechanisms to remotely configure the parameters used
        by an SNMP entity for the generation of SNMP messages."
   REVISION        "9707140000Z"
   DESCRIPTION
       "The initial revision."
   ::= { snmpModules 7 }

snmpTargetObjects OBJECT IDENTIFIER ::= { snmpTargetMIB 1 } snmpTargetConformance OBJECT IDENTIFIER ::= { snmpTargetMIB 3 }

SnmpTagValue ::= TEXTUAL-CONVENTION DISPLAY-HINT "255a" STATUS current DESCRIPTION "An octet string containing a tag value. Tag values are preferably in human-readable form.

        To facilitate internationalization, this information
        is represented using the ISO/IEC IS 10646-1 character
        set, encoded as an octet string using the UTF-8
        character encoding scheme described in [RFC 2044](./rfc2044).

        Since additional code points are added by amendments
        to the 10646 standard from time to time,
        implementations must be prepared to encounter any code
        point from 0x00000000 to 0x7fffffff.

        The use of control codes should be avoided, and certain
        control codes are not allowed as described below.

        For code points not directly supported by user
        interface hardware or software, an alternative means
        of entry and display, such as hexadecimal, may be
        provided.

        For information encoded in 7-bit US-ASCII, the UTF-8
        representation is identical to the US-ASCII encoding.

Levi, et. al. Standards Track [Page 30]


RFC 2263 SNMPv3 Applications January 1998

        Note that when this TC is used for an object that
        is used or envisioned to be used as an index, then a
        SIZE restriction must be specified so that the number
        sub-identifiers for any object instance do not exceed
        the limit of 128, as defined by [[RFC1905](./rfc1905)].

        An object of this type contains a single tag value
        which is used to select a set of entries in a table.
        A tag value is an arbitrary string of octets, but
        may not contain a delimiter character.  Delimiter
        characters are defined to be one of the following:

            -  An ASCII space character (0x20).

            -  An ASCII TAB character (0x09).

            -  An ASCII carriage return (CR) character (0x0D).

            -  An ASCII line feed (LF) character (0x0B).

        Delimiter characters are used to separate tag values
        in a tag list.  An object of this type may only
        contain a single tag value, and so delimiter
        characters are not allowed in a value of this type.

        Some examples of valid tag values are:

            - 'acme'

            - 'router'

            - 'host'

        The use of a tag value to select table entries is
        application and MIB specific."
   SYNTAX       OCTET STRING (SIZE (0..255))

SnmpTagList ::= TEXTUAL-CONVENTION DISPLAY-HINT "255a" STATUS current DESCRIPTION "An octet string containing a list of tag values. Tag values are preferably in human-readable form.

        To facilitate internationalization, this information
        is represented using the ISO/IEC IS 10646-1 character
        set, encoded as an octet string using the UTF-8
        character encoding scheme described in [RFC 2044](./rfc2044).

Levi, et. al. Standards Track [Page 31]


RFC 2263 SNMPv3 Applications January 1998

        Since additional code points are added by amendments
        to the 10646 standard from time to time,
        implementations must be prepared to encounter any code
        point from 0x00000000 to 0x7fffffff.

        The use of control codes should be avoided, except as
        described below.

        For code points not directly supported by user
        interface hardware or software, an alternative means
        of entry and display, such as hexadecimal, may be
        provided.

        For information encoded in 7-bit US-ASCII, the UTF-8
        representation is identical to the US-ASCII encoding.

        An object of this type contains a list of tag values
        which are used to select a set of entries in a table.

        A tag value is an arbitrary string of octets, but
        may not contain a delimiter character.  Delimiter
        characters are defined to be one of the following:

            -  An ASCII space character (0x20).

            -  An ASCII TAB character (0x09).

            -  An ASCII carriage return (CR) character (0x0D).

            -  An ASCII line feed (LF) character (0x0B).

        Delimiter characters are used to separate tag values
        in a tag list.  Only a single delimiter character may
        occur between two tag values.  A tag value may not
        have a zero length.  These constraints imply certain
        restrictions on the contents of this object:

            - There cannot be a leading or trailing delimiter
              character.

            - There cannot be multiple adjacent delimiter
              characters.

        Some examples of valid tag lists are:

            - An empty string

            - 'acme router'

Levi, et. al. Standards Track [Page 32]


RFC 2263 SNMPv3 Applications January 1998

            - 'host managerStation'

        Note that although a tag value may not have a length of
        zero, an empty string is still valid.  This indicates
        an empty list (i.e. there are no tag values in the list).

        The use of the tag list to select table entries is
        application and MIB specific.  Typically, an application
        will provide one or more tag values, and any entry
        which contains some combination of these tag values
        will be selected."
   SYNTAX       OCTET STRING (SIZE (0..255))

--

-- The snmpTargetObjects group

--

snmpTargetSpinLock OBJECT-TYPE SYNTAX TestAndIncr MAX-ACCESS read-write STATUS current DESCRIPTION "This object is used to facilitate modification of table entries in the SNMP-TARGET-MIB module by multiple managers. In particular, it is useful when modifying the value of the snmpTargetAddrTagList object.

        The procedure for modifying the snmpTargetAddrTagList
        object is as follows:

            1.  Retrieve the value of snmpTargetSpinLock and
                of snmpTargetAddrTagList.

            2.  Generate a new value for snmpTargetAddrTagList.

            3.  Set the value of snmpTargetSpinLock to the
                retrieved value, and the value of
                snmpTargetAddrTagList to the new value.  If
                the set fails for the snmpTargetSpinLock
                object, go back to step 1."
   ::= { snmpTargetObjects 1 }

snmpTargetAddrTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpTargetAddrEntry MAX-ACCESS not-accessible STATUS current

Levi, et. al. Standards Track [Page 33]


RFC 2263 SNMPv3 Applications January 1998

   DESCRIPTION
       "A table of transport addresses to be used in the generation
        of SNMP messages."

   ::= { snmpTargetObjects 2 }

snmpTargetAddrEntry OBJECT-TYPE SYNTAX SnmpTargetAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A transport address to be used in the generation of SNMP operations.

        Entries in the snmpTargetAddrTable are created and
        deleted using the snmpTargetAddrRowStatus object."
   INDEX { IMPLIED snmpTargetAddrName }
   ::= { snmpTargetAddrTable 1 }

SnmpTargetAddrEntry ::= SEQUENCE { snmpTargetAddrName SnmpAdminString, snmpTargetAddrTDomain TDomain, snmpTargetAddrTAddress TAddress, snmpTargetAddrTimeout TimeInterval, snmpTargetAddrRetryCount Integer32, snmpTargetAddrTagList SnmpTagList, snmpTargetAddrParams SnmpAdminString, snmpTargetAddrStorageType StorageType, snmpTargetAddrRowStatus RowStatus }

snmpTargetAddrName OBJECT-TYPE SYNTAX SnmpAdminString (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The locally arbitrary, but unique identifier associated with this snmpTargetAddrEntry." ::= { snmpTargetAddrEntry 1 }

snmpTargetAddrTDomain OBJECT-TYPE SYNTAX TDomain MAX-ACCESS read-create STATUS current DESCRIPTION "This object indicates the transport type of the address contained in the snmpTargetAddrTAddress object." ::= { snmpTargetAddrEntry 2 }

Levi, et. al. Standards Track [Page 34]


RFC 2263 SNMPv3 Applications January 1998

snmpTargetAddrTAddress OBJECT-TYPE SYNTAX TAddress MAX-ACCESS read-create STATUS current DESCRIPTION "This object contains a transport address. The format of this address depends on the value of the snmpTargetAddrTDomain object." ::= { snmpTargetAddrEntry 3 }

snmpTargetAddrTimeout OBJECT-TYPE SYNTAX TimeInterval MAX-ACCESS read-create STATUS current DESCRIPTION "This object should reflect the expected maximum round trip time for communicating with the transport address defined by this row. When a message is sent to this address, and a response (if one is expected) is not received within this time period, an implementation may assume that the response will not be delivered.

        Note that the time interval that an application waits
        for a response may actually be derived from the value
        of this object.  The method for deriving the actual time
        interval is implementation dependent.  One such method
        is to derive the expected round trip time based on a
        particular retransmission algorithm and on the number
        of timeouts which have occurred.  The type of message may
        also be considered when deriving expected round trip
        times for retransmissions.  For example, if a message is
        being sent with a securityLevel that indicates both
        authentication and privacy, the derived value may be
        increased to compensate for extra processing time spent
        during authentication and encryption processing."
   DEFVAL { 1500 }
   ::= { snmpTargetAddrEntry 4 }

snmpTargetAddrRetryCount OBJECT-TYPE SYNTAX Integer32 (0..255) MAX-ACCESS read-create STATUS current DESCRIPTION "This object specifies a default number of retries to be attempted when a response is not received for a generated message. An application may provide its own retry count, in which case the value of this object is ignored." DEFVAL { 3 }

Levi, et. al. Standards Track [Page 35]


RFC 2263 SNMPv3 Applications January 1998

   ::= { snmpTargetAddrEntry 5 }

snmpTargetAddrTagList OBJECT-TYPE SYNTAX SnmpTagList MAX-ACCESS read-create STATUS current DESCRIPTION "This object contains a list of tag values which are used to select target addresses for a particular operation." ::= { snmpTargetAddrEntry 6 }

snmpTargetAddrParams OBJECT-TYPE SYNTAX SnmpAdminString (SIZE(1..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object identifies an entry in the snmpTargetParamsTable. The identified entry contains SNMP parameters to be used when generating messages to be sent to this transport address." ::= { snmpTargetAddrEntry 7 }

snmpTargetAddrStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type for this conceptual row." ::= { snmpTargetAddrEntry 8 }

snmpTargetAddrRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row.

        To create a row in this table, a manager must
        set this object to either createAndGo(4) or
        createAndWait(5).

        Until instances of all corresponding columns are
        appropriately configured, the value of the
        corresponding instance of the snmpTargetAddrRowStatus
        column is 'notReady'.

        In particular, a newly created row cannot be made

Levi, et. al. Standards Track [Page 36]


RFC 2263 SNMPv3 Applications January 1998

        active until the corresponding snmpTargetAddrTDomain
        and snmpTargetAddrTAddress have both been set.

        The following objects may not be modified while the
        value of this object is active(1):
            - snmpTargetAddrTDomain
            - snmpTargetAddrTAddress"
   ::= { snmpTargetAddrEntry 9 }

snmpTargetParamsTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpTargetParamsEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table of SNMP target information to be used in the generation of SNMP messages." ::= { snmpTargetObjects 3 }

snmpTargetParamsEntry OBJECT-TYPE SYNTAX SnmpTargetParamsEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A set of SNMP target information.

        Entries in the snmpTargetParamsTable are created and
        deleted using the snmpTargetParamsRowStatus object."
   INDEX { IMPLIED snmpTargetParamsName }
   ::= { snmpTargetParamsTable 1 }

SnmpTargetParamsEntry ::= SEQUENCE { snmpTargetParamsName SnmpAdminString, snmpTargetParamsMPModel SnmpMessageProcessingModel, snmpTargetParamsSecurityModel SnmpSecurityModel, snmpTargetParamsSecurityName SnmpAdminString, snmpTargetParamsSecurityLevel SnmpSecurityLevel, snmpTargetParamsStorageType StorageType, snmpTargetParamsRowStatus RowStatus }

snmpTargetParamsName OBJECT-TYPE SYNTAX SnmpAdminString (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The locally arbitrary, but unique identifier associated with this snmpTargetParamsEntry." ::= { snmpTargetParamsEntry 1 }

Levi, et. al. Standards Track [Page 37]


RFC 2263 SNMPv3 Applications January 1998

snmpTargetParamsMPModel OBJECT-TYPE SYNTAX SnmpMessageProcessingModel MAX-ACCESS read-create STATUS current DESCRIPTION "The Message Processing Model to be used when generating SNMP messages using this entry." ::= { snmpTargetParamsEntry 2 }

snmpTargetParamsSecurityModel OBJECT-TYPE SYNTAX SnmpSecurityModel (0..254 | 256..2147483647) MAX-ACCESS read-create STATUS current DESCRIPTION "The Security Model to be used when generating SNMP messages using this entry." ::= { snmpTargetParamsEntry 3 }

snmpTargetParamsSecurityName OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-create STATUS current DESCRIPTION "The securityName which identifies the Principal on whose behalf SNMP messages will be generated using this entry." ::= { snmpTargetParamsEntry 4 }

snmpTargetParamsSecurityLevel OBJECT-TYPE SYNTAX SnmpSecurityLevel MAX-ACCESS read-create STATUS current DESCRIPTION "The Level of Security to be used when generating SNMP messages using this entry." ::= { snmpTargetParamsEntry 5 }

snmpTargetParamsStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type for this conceptual row." ::= { snmpTargetParamsEntry 6 }

snmpTargetParamsRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create

Levi, et. al. Standards Track [Page 38]


RFC 2263 SNMPv3 Applications January 1998

   STATUS      current
   DESCRIPTION
       "The status of this conceptual row.

        To create a row in this table, a manager must
        set this object to either createAndGo(4) or
        createAndWait(5).

        Until instances of all corresponding columns are
        appropriately configured, the value of the
        corresponding instance of the snmpTargetParamsRowStatus
        column is 'notReady'.

        In particular, a newly created row cannot be made
        active until the corresponding
        snmpTargetParamsMPModel,
        snmpTargetParamsSecurityModel,
        snmpTargetParamsSecurityName,
        and snmpTargetParamsSecurityLevel have all been set.

        The following objects may not be modified while the
        value of this object is active(1):
            - snmpTargetParamsMPModel
            - snmpTargetParamsSecurityModel
            - snmpTargetParamsSecurityName
            - snmpTargetParamsSecurityLevel"
   ::= { snmpTargetParamsEntry 7 }

snmpUnavailableContexts OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because the context contained in the mesage was unavailable." ::= { snmpTargetObjects 4 }

snmpUnknownContexts OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because the context contained in the mesage was unknown."

   ::= { snmpTargetObjects 5 }

Levi, et. al. Standards Track [Page 39]


RFC 2263 SNMPv3 Applications January 1998

--

-- Conformance information

--

snmpTargetCompliances OBJECT IDENTIFIER ::= { snmpTargetConformance 1 } snmpTargetGroups OBJECT IDENTIFIER ::= { snmpTargetConformance 2 }

--

-- Compliance statements

--

snmpTargetCommandResponderCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which include a command responder application." MODULE -- This Module MANDATORY-GROUPS { snmpTargetCommandResponderGroup } ::= { snmpTargetCompliances 1 }

snmpTargetBasicGroup OBJECT-GROUP OBJECTS { snmpTargetSpinLock, snmpTargetAddrTDomain, snmpTargetAddrTAddress, snmpTargetAddrTagList, snmpTargetAddrParams, snmpTargetAddrStorageType, snmpTargetAddrRowStatus, snmpTargetParamsMPModel, snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName, snmpTargetParamsSecurityLevel, snmpTargetParamsStorageType, snmpTargetParamsRowStatus } STATUS current DESCRIPTION

       "A collection of objects providing basic remote
        configuration of management targets."

Levi, et. al. Standards Track [Page 40]


RFC 2263 SNMPv3 Applications January 1998

   ::= { snmpTargetGroups 1 }

snmpTargetResponseGroup OBJECT-GROUP OBJECTS { snmpTargetAddrTimeout, snmpTargetAddrRetryCount } STATUS current DESCRIPTION "A collection of objects providing remote configuration of management targets for applications which generate SNMP messages for which a response message would be expected." ::= { snmpTargetGroups 2 }

snmpTargetCommandResponderGroup OBJECT-GROUP OBJECTS { snmpUnavailableContexts, snmpUnknownContexts } STATUS current DESCRIPTION "A collection of objects required for command responder applications, used for counting error conditions." ::= { snmpTargetGroups 3 }

END

4.2. The Notification MIB Module

The SNMP-NOTIFICATION-MIB module contains objects for the remote configuration of the parameters used by an SNMP entity for the generation of notifications. It consists of three tables and conformance/compliance statements. The first table, the snmpNotifyTable, contains entries which select which entries in the snmpTargetAddrTable should be used for generating notifications, and the type of notifications to be generated.

The second table sparsely augments the snmpTargetAddrTable with an object which is used to associate a set of filters with a particular management target.

The third table defines filters which are used to limit the number of notifications which are generated using particular management targets.

Levi, et. al. Standards Track [Page 41]


RFC 2263 SNMPv3 Applications January 1998

4.2.1. Definitions

SNMP-NOTIFICATION-MIB DEFINITIONS ::= BEGIN

IMPORTS MODULE-IDENTITY, OBJECT-TYPE, snmpModules FROM SNMPv2-SMI

   RowStatus,
   StorageType
       FROM SNMPv2-TC

   SnmpAdminString
       FROM SNMP-FRAMEWORK-MIB

   SnmpTagValue,
   snmpTargetParamsName
       FROM SNMP-TARGET-MIB

   MODULE-COMPLIANCE,
   OBJECT-GROUP
       FROM SNMPv2-CONF;

snmpNotificationMIB MODULE-IDENTITY LAST-UPDATED "9711210000Z" ORGANIZATION "IETF SNMPv3 Working Group" CONTACT-INFO "WG-email: snmpv3@tis.com Subscribe: majordomo@tis.com In message body: subscribe snmpv3

        Chair:      Russ Mundy
                    Trusted Information Systems
        Postal:     3060 Washington Rd
                    Glenwood MD 21738
                    USA
        Email:      mundy@tis.com
        Phone:      +1-301-854-6889

        Co-editor:  David B. Levi
                    SNMP Research, Inc.
        Postal:     3001 Kimberlin Heights Road
                    Knoxville, TN 37920-9716
        E-mail:     levi@snmp.com
        Phone:      +1 423 573 1434

Levi, et. al. Standards Track [Page 42]


RFC 2263 SNMPv3 Applications January 1998

        Co-editor:  Paul Meyer
                    Secure Computing Corporation
        Postal:     2675 Long Lake Road
                    Roseville, MN 55113
        E-mail:     paul_meyer@securecomputing.com
        Phone:      +1 612 628 1592

        Co-editor:  Bob Stewart
                    Cisco Systems, Inc.
        Postal:     170 West Tasman Drive
                    San Jose, CA 95134-1706
        E-mail:     bstewart@cisco.com
        Phone:      +1 603 654 6923"
   DESCRIPTION
       "This MIB module defines MIB objects which provide
        mechanisms to remotely configure the parameters
        used by an SNMP entity for the generation of
        notifications."
   REVISION    "9707140000Z"
   DESCRIPTION
       "The initial revision."
   ::= { snmpModules 8 }

snmpNotifyObjects OBJECT IDENTIFIER ::= { snmpNotificationMIB 1 } snmpNotifyConformance OBJECT IDENTIFIER ::= { snmpNotificationMIB 3 }

--

-- The snmpNotifyObjects group

--

snmpNotifyTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpNotifyEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table is used to select management targets which should receive notifications, as well as the type of notification which should be sent to each selected management target." ::= { snmpNotifyObjects 1 }

snmpNotifyEntry OBJECT-TYPE SYNTAX SnmpNotifyEntry MAX-ACCESS not-accessible

Levi, et. al. Standards Track [Page 43]


RFC 2263 SNMPv3 Applications January 1998

   STATUS      current
   DESCRIPTION
       "An entry in this table selects a set of management targets
        which should receive notifications, as well as the type of
        notification which should be sent to each selected
        management target.

        Entries in the snmpNotifyTable are created and
        deleted using the snmpNotifyRowStatus object."
   INDEX { IMPLIED snmpNotifyName }
   ::= { snmpNotifyTable 1 }

SnmpNotifyEntry ::= SEQUENCE { snmpNotifyName SnmpAdminString, snmpNotifyTag SnmpTagValue, snmpNotifyType INTEGER, snmpNotifyStorageType StorageType, snmpNotifyRowStatus RowStatus }

snmpNotifyName OBJECT-TYPE SYNTAX SnmpAdminString (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The locally arbitrary, but unique identifier associated with this snmpNotifyEntry." ::= { snmpNotifyEntry 1 }

snmpNotifyTag OBJECT-TYPE SYNTAX SnmpTagValue MAX-ACCESS read-create STATUS current DESCRIPTION "This object contains a single tag value which is used to select entries in the snmpTargetAddrTable. Any entry in the snmpTargetAddrTable which contains a tag value which is equal to the value of an instance of this object is selected. If this object contains a value of zero length, no entries are selected." ::= { snmpNotifyEntry 2 }

snmpNotifyType OBJECT-TYPE SYNTAX INTEGER { trap(1), inform(2) } MAX-ACCESS read-create

Levi, et. al. Standards Track [Page 44]


RFC 2263 SNMPv3 Applications January 1998

   STATUS      current
   DESCRIPTION
       "This object determines the type of notification to
        be generated for entries in the snmpTargetAddrTable
        selected by the corresponding instance of
        snmpNotifyTag.

        If the value of this object is trap(1), then any
        messages generated for selected rows will contain
        SNMPv2-Trap PDUs.

        If the value of this object is inform(2), then any
        messages generated for selected rows will contain
        Inform PDUs.

        Note that if an SNMP entity only supports
        generation of traps (and not informs), then this
        object may be read-only."
   DEFVAL { trap }
   ::= { snmpNotifyEntry 3 }

snmpNotifyStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type for this conceptual row." ::= { snmpNotifyEntry 4 }

snmpNotifyRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row.

        To create a row in this table, a manager must
        set this object to either createAndGo(4) or
        createAndWait(5).

        Until instances of all corresponding columns are
        appropriately configured, the value of the
        corresponding instance of the snmpNotifyRowStatus
        column is 'notReady'.

        In particular, a newly created row cannot be made
        active until the corresponding snmpNotifyTag has
        been set."

Levi, et. al. Standards Track [Page 45]


RFC 2263 SNMPv3 Applications January 1998

   ::= { snmpNotifyEntry 5 }

snmpNotifyFilterProfileTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpNotifyFilterProfileEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table is used to associate a notification filter profile with a particular set of target parameters." ::= { snmpNotifyObjects 2 }

snmpNotifyFilterProfileEntry OBJECT-TYPE SYNTAX SnmpNotifyFilterProfileEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in this table indicates the name of the filter profile to be used when generating notifications using the corresponding entry in the snmpTargetParamsTable.

        Entries in the snmpNotifyFilterProfileTable are created
        and deleted using the snmpNotifyFilterProfileRowStatus
        object."
   INDEX { IMPLIED snmpTargetParamsName }
   ::= { snmpNotifyFilterProfileTable 1 }

SnmpNotifyFilterProfileEntry ::= SEQUENCE { snmpNotifyFilterProfileName SnmpAdminString, snmpNotifyFilterProfileStorType StorageType, snmpNotifyFilterProfileRowStatus RowStatus }

snmpNotifyFilterProfileName OBJECT-TYPE SYNTAX SnmpAdminString (SIZE(1..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "The name of the filter profile to be used when generating notifications using the corresponding entry in the snmpTargetAddrTable." ::= { snmpNotifyFilterProfileEntry 1 }

snmpNotifyFilterProfileStorType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type of this conceptual row."

Levi, et. al. Standards Track [Page 46]


RFC 2263 SNMPv3 Applications January 1998

   ::= { snmpNotifyFilterProfileEntry 2 }

snmpNotifyFilterProfileRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row.

        To create a row in this table, a manager must
        set this object to either createAndGo(4) or
        createAndWait(5)."
   ::= { snmpNotifyFilterProfileEntry 3 }

snmpNotifyFilterTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpNotifyFilterEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The table of filter profiles. Filter profiles are used to determine whether particular management targets should receive particular notifications.

        When a notification is generated, it must be compared
        with the filters associated with each management target
        which is configured to receive notifications.  If the
        notification is matched by a filter, it is not sent to
        the management target with which the filter is
        associated."
   ::= { snmpNotifyObjects 3 }

snmpNotifyFilterEntry OBJECT-TYPE SYNTAX SnmpNotifyFilterEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An element of a filter profile.

        Entries in the snmpNotifyFilterTable are created and
        deleted using the snmpNotifyFilterRowStatus object."
   INDEX {         snmpNotifyFilterProfileName,
           IMPLIED snmpNotifyFilterSubtree }
   ::= { snmpNotifyFilterTable 1 }

SnmpNotifyFilterEntry ::= SEQUENCE { snmpNotifyFilterSubtree OBJECT IDENTIFIER, snmpNotifyFilterMask OCTET STRING, snmpNotifyFilterType INTEGER,

Levi, et. al. Standards Track [Page 47]


RFC 2263 SNMPv3 Applications January 1998

   snmpNotifyFilterStorageType       StorageType,
   snmpNotifyFilterRowStatus         RowStatus

}

snmpNotifyFilterSubtree OBJECT-TYPE SYNTAX OBJECT IDENTIFIER MAX-ACCESS not-accessible STATUS current DESCRIPTION "The MIB subtree which, when combined with the corresponding instance of snmpNotifyFilterMask, defines a family of subtrees which are included in or excluded from the filter profile." ::= { snmpNotifyFilterEntry 1 }

snmpNotifyFilterMask OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..16)) MAX-ACCESS read-create STATUS current DESCRIPTION "The bit mask which, in combination with the corresponding instance of snmpNotifyFilterSubtree, defines a family of subtrees which are included in or excluded from the filter profile.

        Each bit of this bit mask corresponds to a
        sub-identifier of snmpNotifyFilterSubtree, with the
        most significant bit of the i-th octet of this octet
        string value (extended if necessary, see below)
        corresponding to the (8*i - 7)-th sub-identifier, and
        the least significant bit of the i-th octet of this
        octet string corresponding to the (8*i)-th
        sub-identifier, where i is in the range 1 through 16.

        Each bit of this bit mask specifies whether or not
        the corresponding sub-identifiers must match when
        determining if an OBJECT IDENTIFIER matches this
        family of filter subtrees; a '1' indicates that an
        exact match must occur; a '0' indicates 'wild card',
        i.e., any sub-identifier value matches.

        Thus, the OBJECT IDENTIFIER X of an object instance
        is contained in a family of filter subtrees if, for
        each sub-identifier of the value of
        snmpNotifyFilterSubtree, either:

          the i-th bit of snmpNotifyFilterMask is 0, or

Levi, et. al. Standards Track [Page 48]


RFC 2263 SNMPv3 Applications January 1998

          the i-th sub-identifier of X is equal to the i-th
          sub-identifier of the value of
          snmpNotifyFilterSubtree.

        If the value of this bit mask is M bits long and
        there are more than M sub-identifiers in the
        corresponding instance of snmpNotifyFilterSubtree,
        then the bit mask is extended with 1's to be the
        required length.

        Note that when the value of this object is the
        zero-length string, this extension rule results in
        a mask of all-1's being used (i.e., no 'wild card'),
        and the family of filter subtrees is the one
        subtree uniquely identified by the corresponding
        instance of snmpNotifyFilterSubtree."
   DEFVAL { ''H }
   ::= { snmpNotifyFilterEntry 2 }

snmpNotifyFilterType OBJECT-TYPE SYNTAX INTEGER { included(1), excluded(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "This object indicates whether the family of filter subtrees defined by this entry are included in or excluded from a filter." DEFVAL { included } ::= { snmpNotifyFilterEntry 3 }

snmpNotifyFilterStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type of this conceptual row." ::= { snmpNotifyFilterEntry 4 }

snmpNotifyFilterRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row.

Levi, et. al. Standards Track [Page 49]


RFC 2263 SNMPv3 Applications January 1998

        To create a row in this table, a manager must
        set this object to either createAndGo(4) or
        createAndWait(5)."
   ::= { snmpNotifyFilterEntry 5 }

--

-- Conformance information

--

snmpNotifyCompliances OBJECT IDENTIFIER ::= { snmpNotifyConformance 1 } snmpNotifyGroups OBJECT IDENTIFIER ::= { snmpNotifyConformance 2 }

--

-- Compliance statements

--

snmpNotifyBasicCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for minimal SNMP entities which implement only SNMP Traps and read-create operations on only the snmpTargetAddrTable." MODULE SNMP-TARGET-MIB MANDATORY-GROUPS { snmpTargetBasicGroup }

       OBJECT snmpTargetParamsMPModel
       MIN-ACCESS    read-only
       DESCRIPTION
           "Create/delete/modify access is not required."

       OBJECT snmpTargetParamsSecurityModel
       MIN-ACCESS    read-only
       DESCRIPTION
           "Create/delete/modify access is not required."

       OBJECT snmpTargetParamsSecurityName
       MIN-ACCESS    read-only
       DESCRIPTION
           "Create/delete/modify access is not required."

       OBJECT snmpTargetParamsSecurityLevel
       MIN-ACCESS    read-only

Levi, et. al. Standards Track [Page 50]


RFC 2263 SNMPv3 Applications January 1998

       DESCRIPTION
           "Create/delete/modify access is not required."

       OBJECT snmpTargetParamsStorageType
       SYNTAX INTEGER {
           readOnly(5)
       }
       MIN-ACCESS    read-only
       DESCRIPTION
           "Create/delete/modify access is not required.
            Support of the values other(1), volatile(2),
            nonVolatile(3), and permanent(4) is not required."

       OBJECT snmpTargetParamsRowStatus
       SYNTAX INTEGER {
           active(1)
       }
       MIN-ACCESS    read-only
       DESCRIPTION
           "Create/delete/modify access to the
            snmpTargetParamsTable is not required.
            Support of the values notInService(2), notReady(3),
            createAndGo(4), createAndWait(5), and destroy(6) is
            not required."

   MODULE -- This Module
       MANDATORY-GROUPS { snmpNotifyGroup }

       OBJECT snmpNotifyTag
       MIN-ACCESS    read-only
       DESCRIPTION
           "Create/delete/modify access is not required."

       OBJECT snmpNotifyType
       SYNTAX INTEGER {
           trap(1)
       }
       MIN-ACCESS    read-only
       DESCRIPTION
           "Create/delete/modify access is not required.
            Support of the value notify(2) is not required."

       OBJECT snmpNotifyStorageType
       SYNTAX INTEGER {
           readOnly(5)
       }
       MIN-ACCESS    read-only
       DESCRIPTION

Levi, et. al. Standards Track [Page 51]


RFC 2263 SNMPv3 Applications January 1998

           "Create/delete/modify access is not required.
            Support of the values other(1), volatile(2),
            nonVolatile(3), and permanent(4) is not required."

       OBJECT snmpNotifyRowStatus
       SYNTAX INTEGER {
           active(1)
       }
       MIN-ACCESS    read-only
       DESCRIPTION
           "Create/delete/modify access to the
            snmpNotifyTable is not required.
            Support of the values notInService(2), notReady(3),
            createAndGo(4), createAndWait(5), and destroy(6) is
            not required."

   ::= { snmpNotifyCompliances 1 }

snmpNotifyBasicFiltersCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which implement SNMP Traps with filtering, and read-create operations on all related tables." MODULE SNMP-TARGET-MIB MANDATORY-GROUPS { snmpTargetBasicGroup } MODULE -- This Module MANDATORY-GROUPS { snmpNotifyGroup, snmpNotifyFilterGroup } ::= { snmpNotifyCompliances 2 }

snmpNotifyFullCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which either implement only SNMP Informs, or both SNMP Traps and SNMP Informs, plus filtering and read-create operations on all related tables." MODULE SNMP-TARGET-MIB MANDATORY-GROUPS { snmpTargetBasicGroup, snmpTargetResponseGroup } MODULE -- This Module MANDATORY-GROUPS { snmpNotifyGroup, snmpNotifyFilterGroup } ::= { snmpNotifyCompliances 3 }

snmpNotifyGroup OBJECT-GROUP OBJECTS {

Levi, et. al. Standards Track [Page 52]


RFC 2263 SNMPv3 Applications January 1998

       snmpNotifyTag,
       snmpNotifyType,
       snmpNotifyStorageType,
       snmpNotifyRowStatus
   }
   STATUS      current
   DESCRIPTION
       "A collection of objects for selecting which management
        targets are used for generating notifications, and the
        type of notification to be generated for each selected
        management target."
   ::= { snmpNotifyGroups 1 }

snmpNotifyFilterGroup OBJECT-GROUP OBJECTS { snmpNotifyFilterProfileName, snmpNotifyFilterProfileStorType, snmpNotifyFilterProfileRowStatus, snmpNotifyFilterMask, snmpNotifyFilterType, snmpNotifyFilterStorageType, snmpNotifyFilterRowStatus } STATUS current DESCRIPTION "A collection of objects providing remote configuration of notification filters." ::= { snmpNotifyGroups 2 }

END

4.3. The Proxy MIB Module

The SNMP-PROXY-MIB module, which defines MIB objects that provide mechanisms to remotely configure the parameters used by an SNMP entity for proxy forwarding operations, contains a single table. This table, snmpProxyTable, is used to define translations between management targets for use when forwarding messages.

4.3.1. Definitions

SNMP-PROXY-MIB DEFINITIONS ::= BEGIN

IMPORTS MODULE-IDENTITY, OBJECT-TYPE, snmpModules FROM SNMPv2-SMI

Levi, et. al. Standards Track [Page 53]


RFC 2263 SNMPv3 Applications January 1998

   RowStatus,
   StorageType
       FROM SNMPv2-TC

   SnmpEngineID,
   SnmpAdminString
       FROM SNMP-FRAMEWORK-MIB

   SnmpTagValue,
       FROM SNMP-TARGET-MIB

   MODULE-COMPLIANCE,
   OBJECT-GROUP
       FROM SNMPv2-CONF;

snmpProxyMIB MODULE-IDENTITY LAST-UPDATED "9711210000Z" ORGANIZATION "IETF SNMPv3 Working Group" CONTACT-INFO "WG-email: snmpv3@tis.com Subscribe: majordomo@tis.com In message body: subscribe snmpv3

        Chair:      Russ Mundy
                    Trusted Information Systems
        Postal:     3060 Washington Rd
                    Glenwood MD 21738
                    USA
        Email:      mundy@tis.com
        Phone:      +1-301-854-6889

        Co-editor:  David B. Levi
                    SNMP Research, Inc.
        Postal:     3001 Kimberlin Heights Road
                    Knoxville, TN 37920-9716
        E-mail:     levi@snmp.com
        Phone:      +1 423 573 1434

        Co-editor:  Paul Meyer
                    Secure Computing Corporation
        Postal:     2675 Long Lake Road
                    Roseville, MN 55113
        E-mail:     paul_meyer@securecomputing.com
        Phone:      +1 612 628 1592

        Co-editor:  Bob Stewart
                    Cisco Systems, Inc.
        Postal:     170 West Tasman Drive

Levi, et. al. Standards Track [Page 54]


RFC 2263 SNMPv3 Applications January 1998

                    San Jose, CA 95134-1706
        E-mail:     bstewart@cisco.com
        Phone:      +1 603 654 6923"
   DESCRIPTION
       "This MIB module defines MIB objects which provide
        mechanisms to remotely configure the parameters
        used by a proxy forwarding application."
   REVISION    "9707140000Z"
   DESCRIPTION
       "The initial revision."
   ::= { snmpModules 9 }

snmpProxyObjects OBJECT IDENTIFIER ::= { snmpProxyMIB 1 } snmpProxyConformance OBJECT IDENTIFIER ::= { snmpProxyMIB 3 }

--

-- The snmpProxyObjects group

--

snmpProxyTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpProxyEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The table of translation parameters used by proxy forwarder applications for forwarding SNMP messages." ::= { snmpProxyObjects 2 }

snmpProxyEntry OBJECT-TYPE SYNTAX SnmpProxyEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A set of translation parameters used by a proxy forwarder application for forwarding SNMP messages.

        Entries in the snmpProxyTable are created and deleted
        using the snmpProxyRowStatus object."
   INDEX { IMPLIED snmpProxyName }
   ::= { snmpProxyTable 1 }

SnmpProxyEntry ::= SEQUENCE { snmpProxyName SnmpAdminString, snmpProxyType INTEGER, snmpProxyContextEngineID SnmpEngineID, snmpProxyContextName SnmpAdminString,

Levi, et. al. Standards Track [Page 55]


RFC 2263 SNMPv3 Applications January 1998

   snmpProxyTargetParamsIn     SnmpAdminString,
   snmpProxySingleTargetOut    SnmpAdminString,
   snmpProxyMultipleTargetOut  SnmpTagValue,
   snmpProxyStorageType        StorageType,
   snmpProxyRowStatus          RowStatus

}

snmpProxyName OBJECT-TYPE SYNTAX SnmpAdminString (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The locally arbitrary, but unique identifier associated with this snmpProxyEntry." ::= { snmpProxyEntry 1 }

snmpProxyType OBJECT-TYPE SYNTAX INTEGER { read(1), write(2), trap(3), inform(4) } MAX-ACCESS read-create STATUS current DESCRIPTION "The type of message that may be forwarded using the translation parameters defined by this entry." ::= { snmpProxyEntry 2 }

snmpProxyContextEngineID OBJECT-TYPE SYNTAX SnmpEngineID MAX-ACCESS read-create STATUS current DESCRIPTION "The contextEngineID contained in messages that may be forwarded using the translation parameters defined by this entry." ::= { snmpProxyEntry 3 }

snmpProxyContextName OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-create STATUS current DESCRIPTION "The contextName contained in messages that may be forwarded using the translation parameters defined by this entry.

Levi, et. al. Standards Track [Page 56]


RFC 2263 SNMPv3 Applications January 1998

        This object is optional, and if not supported, the
        contextName contained in a message is ignored when
        selecting an entry in the snmpProxyTable."
   ::= { snmpProxyEntry 4 }

snmpProxyTargetParamsIn OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-create STATUS current DESCRIPTION "This object selects an entry in the snmpTargetParamsTable. The selected entry is used to determine which row of the snmpProxyTable to use for forwarding received messages." ::= { snmpProxyEntry 5 }

snmpProxySingleTargetOut OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-create STATUS current DESCRIPTION "This object selects a management target defined in the snmpTargetAddrTable (in the SNMP-TARGET-MIB). The selected target is defined by an entry in the snmpTargetAddrTable whose index value (snmpTargetAddrName) is equal to this object.

        This object is only used when selection of a single
        target is required (i.e. when forwarding an incoming
        read or write request)."
   ::= { snmpProxyEntry 6 }

snmpProxyMultipleTargetOut OBJECT-TYPE SYNTAX SnmpTagValue MAX-ACCESS read-create STATUS current DESCRIPTION "This object selects a set of management targets defined in the snmpTargetAddrTable (in the SNMP-TARGET-MIB).

        This object is only used when selection of multiple
        targets is required (i.e. when forwarding an incoming
        notification)."
   ::= { snmpProxyEntry 7 }

snmpProxyStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current

Levi, et. al. Standards Track [Page 57]


RFC 2263 SNMPv3 Applications January 1998

   DESCRIPTION
       "The storage type of this conceptual row."
   ::= { snmpProxyEntry 8 }

snmpProxyRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row.

        To create a row in this table, a manager must
        set this object to either createAndGo(4) or
        createAndWait(5).

        The following objects may not be modified while the
        value of this object is active(1):
            - snmpProxyType
            - snmpProxyContextEngineID
            - snmpProxyContextName
            - snmpProxyTargetParamsIn
            - snmpProxySingleTargetOut
            - snmpProxyMultipleTargetOut"

   ::= { snmpProxyEntry 9 }

--

-- Conformance information

--

snmpProxyCompliances OBJECT IDENTIFIER ::= { snmpProxyConformance 1 } snmpProxyGroups OBJECT IDENTIFIER ::= { snmpProxyConformance 2 }

--

-- Compliance statements

--

snmpProxyCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which include a proxy forwarding application."

Levi, et. al. Standards Track [Page 58]


RFC 2263 SNMPv3 Applications January 1998

   MODULE SNMP-TARGET-MIB
       MANDATORY-GROUPS { snmpTargetBasicGroup,
                          snmpTargetResponseGroup }
   MODULE -- This Module
       MANDATORY-GROUPS { snmpProxyGroup }
   ::= { snmpProxyCompliances 1 }

snmpProxyGroup OBJECT-GROUP OBJECTS { snmpProxyType, snmpProxyContextEngineID, snmpProxyContextName, snmpProxyTargetParamsIn, snmpProxySingleTargetOut, snmpProxyMultipleTargetOut, snmpProxyStorageType, snmpProxyRowStatus } STATUS current DESCRIPTION "A collection of objects providing remote configuration of management target translation parameters for use by proxy forwarder applications."

   ::= { snmpProxyGroups 3 }

END

5. Identification of Management Targets in Notification Originators

This section describes the mechanisms used by a notification originator application when using the MIB module described in this document to determine the set of management targets to be used when generating a notification.

A notification originator uses the snmpNotifyTable to find the management targets to be used for generating notifications. Each active entry in this table identifies zero or more entries in the snmpTargetAddrTable. Any entry in the snmpTargetAddrTable whose snmpTargetAddrTagList object contains a tag value which is equal to a value of snmpNotifyTag is selected by the snmpNotifyEntry which contains that instance of snmpNotifyTag. Note that a particular snmpTargetAddrEntry may be selected by multiple entries in the snmpNotifyTable, resulting in multiple notifications being generated using that snmpTargetAddrEntry.

Levi, et. al. Standards Track [Page 59]


RFC 2263 SNMPv3 Applications January 1998

Each snmpTargetAddrEntry contains a pointer to the snmpTargetParamsTable (snmpTargetAddrParams). This pointer selects a set of SNMP parameters to be used for generating notifications. If the selected entry in the snmpTargetParamsTable does not exist, the management target is not used to generate notifications.

The decision as to whether a notification should contain an SNMPv2- Trap or Inform PDU is determined by the value of the snmpNotifyType object. If the value of this object is trap(1), the notification should contain an SNMPv2-Trap PDU. If the value of this object is inform(2), then the notification should contain an Inform PDU, and the timeout time and number of retries for the Inform are the value of snmpTargetAddrTimeout and snmpTargetAddrRetryCount. Note that the exception to these rules is when the snmpTargetParamsMPModel object indicates SNMPv1. In this case, the notification is sent as a Trap if the value of snmpNotifyTargetType is either trap(1) or inform(2).

6. Notification Filtering

This section describes the mechanisms used by a notification originator application when using the MIB module described in this document to filter generation of notifications.

A notification originator uses the snmpNotifyFilterTable to filter notifications. A notification filter profile may be associated with a particular entry in the snmpTargetParamsTable. The associated filter profile is identified by an entry in the snmpNotifyFilterProfileTable whose index is equal to the index of the entry in the snmpTargetParamsTable. If no such entry exists in the snmpNotifyFilterProfileTable, no filtering is performed for that management target.

If such an entry does exist, the value of snmpNotifyFilterProfileName of the entry is compared with the corresponding portion of the index of all active entries in the snmpNotifyFilterTable. All such entries for which this comparison results in an exact match are used for filtering a notification generated using the associated snmpTargetParamsEntry. If no such entries exist, no filtering is performed, and a notification may be sent to the management target.

Otherwise, if matching entries do exist, a notification may be sent if the NOTIFICATION-TYPE OBJECT IDENTIFIER of the notification (this is the value of the element of the variable bindings whose name is snmpTrapOID.0, i.e., the second variable binding), and all of the object instances to be included in the variable-bindings of the notification, are not specifically excluded by the matching entries.

Levi, et. al. Standards Track [Page 60]


RFC 2263 SNMPv3 Applications January 1998

Each set of snmpNotifyFilterTable entries is divided into two collections of filter subtrees: the included filter subtrees, and the excluded filter subtrees. The snmpNotifyFilterType object defines the collection to which each matching entry belongs.

To determine whether a particular notification name or object instance is excluded by the set of matching entries, compare the notification name's or object instance's OBJECT IDENTIFIER with each of the matching entries. If none match, then the notification name or object instance is considered excluded, and the notification should not be sent to this management target. If one or more match, then the notification name or object instance is included or excluded, according to the value of snmpNotifyFilterType in the entry whose value of snmpNotifyFilterSubtree has the most sub-identifiers. If multiple entries match and have the same number of sub- identifiers, then the lexicographically greatest instance of snmpNotifyFilterType among those which match determines the inclusion or exclusion.

A notification name's or object instance's OBJECT IDENTIFIER X matches an entry in the snmpNotifyFilterTable when the number of sub-identifiers in X is at least as many as in the value of snmpNotifyFilterSubtree for the entry, and each sub-identifier in the value of snmpNotifyFilterSubtree matches its corresponding sub- identifier in X. Two sub-identifiers match either if the corresponding bit of snmpNotifyFilterMask is zero (the 'wild card' value), or if the two sub-identifiers are equal.

7. Management Target Translation in Proxy Forwarder Applications

This section describes the mechanisms used by a proxy forwarder application when using the MIB module described in this document to translate incoming management target information into outgoing management target information for the purpose of forwarding messages. There are actually two mechanisms a proxy forwarder may use, one for forwarding request messages, and one for forwarding notification messages.

7.1. Management Target Translation for Request Forwarding

When forwarding request messages, the proxy forwarder will select a single entry in the snmpProxyTable. To select this entry, it will perform the following comparisons:

   -  The snmpProxyType must be read(1) if the request is a Get,
      GetNext, or GetBulk request.  The snmpProxyType must be
      write(2) if the request is a Set request.

Levi, et. al. Standards Track [Page 61]


RFC 2263 SNMPv3 Applications January 1998

   -  The contextEngineId must equal the snmpProxyContextEngineID
      object.

   -  If the snmpProxyContextName object is supported, it must equal
      the contextName.

   -  The snmpProxyTargetParamsIn object identifies an entry in the
      snmpTargetParamsTable.  The messageProcessingModel,
      securityLevel, security model, and securityName must match the
      values of snmpTargetParamsMPModel,
      snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName,
      and snmpTargetParamsSecurityLevel of the identified entry in
      the snmpTargetParamsTable.

There may be multiple entries in the snmpProxyTable for which these comparisons succeed. The entry whose snmpProxyName has the lexicographically smallest value and for which the comparisons succeed will be selected by the proxy forwarder.

The outgoing management target information is identified by the value of the snmpProxySingleTargetOut object of the selected entry. This object identifies an entry in the snmpTargetAddrTable. The identified entry in the snmpTargetAddrTable also contains a reference to the snmpTargetParamsTable (snmpTargetAddrParams). If either the identified entry in the snmpTargetAddrTable does not exist, or the identified entry in the snmpTargetParamsTable does not exist, then this snmpProxyEntry does not identify valid forwarding information, and the proxy forwarder should attempt to identify another row.

If there is no entry in the snmpProxyTable for which all of the conditions above may be met, then there is no appropriate forwarding information, and the proxy forwarder should take appropriate actions.

Otherwise, The snmpTargetAddrTDomain, snmpTargetAddrTAddress, snmpTargetAddrTimeout, and snmpTargetRetryCount of the identified snmpTargetAddrEntry, and the snmpTargetParamsMPModel, snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName, and snmpTargetParamsSecurityLevel of the identified snmpTargetParamsEntry are used as the destination management target.

7.2. Management Target Translation for Notification Forwarding

When forwarding notification messages, the proxy forwarder will select multiple entries in the snmpProxyTable. To select these entries, it will perform the following comparisons:

Levi, et. al. Standards Track [Page 62]


RFC 2263 SNMPv3 Applications January 1998

   -  The snmpProxyType must be trap(3) if the notification is a
      Trap.  The snmpProxyType must be inform(4) if the request is
      an Inform.

   -  The contextEngineId must equal the snmpProxyContextEngineID
      object.

   -  If the snmpProxyContextName object is supported, it must equal
      the contextName.

   -  The snmpProxyTargetParamsIn object identifies an entry in the
      snmpTargetParamsTable.  The messageProcessingModel,
      securityLevel, security model, and securityName must match the
      values of snmpTargetParamsMPModel,
      snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName,
      and snmpTargetParamsSecurityLevel of the identified entry in
      the snmpTargetParamsTable.

All entries for which these conditions are met are selected. The snmpProxyMultipleTargetOut object of each such entry is used to select a set of entries in the snmpTargetAddrTable. Any snmpTargetAddrEntry whose snmpTargetAddrTagList object contains a tag value equal to the value of snmpProxyMultipleTargetOut, and whose snmpTargetAddrParams object references an existing entry in the snmpTargetParamsTable, is selected as a destination for the forwarded notification.

8. Intellectual Property

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

Levi, et. al. Standards Track [Page 63]


RFC 2263 SNMPv3 Applications January 1998

9. Acknowledgments

This document is the result of the efforts of the SNMPv3 Working Group. Some special thanks are in order to the following SNMPv3 WG members:

  Dave Battle (SNMP Research, Inc.)
  Uri Blumenthal (IBM T.J. Watson Research Center)
  Jeff Case (SNMP Research, Inc.)
  John Curran (BBN)
  T. Max Devlin (Hi-TECH Connections)
  John Flick (Hewlett Packard)
  David Harrington (Cabletron Systems Inc.)
  N.C. Hien (IBM T.J. Watson Research Center)
  Dave Levi (SNMP Research, Inc.)
  Louis A Mamakos (UUNET Technologies Inc.)
  Paul Meyer (Secure Computing Corporation)
  Keith McCloghrie (Cisco Systems)
  Russ Mundy (Trusted Information Systems, Inc.)
  Bob Natale (ACE*COMM Corporation)
  Mike O'Dell (UUNET Technologies Inc.)
  Dave Perkins (DeskTalk)
  Peter Polkinghorne (Brunel University)
  Randy Presuhn (BMC Software, Inc.)
  David Reid (SNMP Research, Inc.)
  Shawn Routhier (Epilogue)
  Juergen Schoenwaelder (TU Braunschweig)
  Bob Stewart (Cisco Systems)
  Bert Wijnen (IBM T.J. Watson Research Center)

The document is based on recommendations of the IETF Security and Administrative Framework Evolution for SNMP Advisory Team. Members of that Advisory Team were:

  David Harrington (Cabletron Systems Inc.)
  Jeff Johnson (Cisco Systems)
  David Levi (SNMP Research Inc.)
  John Linn (Openvision)
  Russ Mundy (Trusted Information Systems) chair
  Shawn Routhier (Epilogue)
  Glenn Waters (Nortel)
  Bert Wijnen (IBM T. J. Watson Research Center)

As recommended by the Advisory Team and the SNMPv3 Working Group Charter, the design incorporates as much as practical from previous RFCs and drafts. As a result, special thanks are due to the authors of previous designs known as SNMPv2u and SNMPv2*:

Levi, et. al. Standards Track [Page 64]


RFC 2263 SNMPv3 Applications January 1998

  Jeff Case (SNMP Research, Inc.)
  David Harrington (Cabletron Systems Inc.)
  David Levi (SNMP Research, Inc.)
  Keith McCloghrie (Cisco Systems)
  Brian O'Keefe (Hewlett Packard)
  Marshall T. Rose (Dover Beach Consulting)
  Jon Saperia (BGS Systems Inc.)
  Steve Waldbusser (International Network Services)
  Glenn W. Waters (Bell-Northern Research Ltd.)

10. Security Considerations

The SNMP applications described in this document typically have direct access to MIB instrumentation. Thus, it is very important that these applications be strict in their application of access control as described in this document.

In addition, there may be some types of notification generator applications which, rather than accessing MIB instrumentation using access control, will obtain MIB information through other means (such as from a command line). The implementors and users of such applications must be responsible for not divulging MIB information that normally would be inaccessible due to access control.

11. References

[RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple Network Management Protocol", RFC 1157, May 1990.

[RFC1213] McCloghrie, K. and M. Rose, Editors, "Management Information Base for Network Management of TCP/IP-based internets: MIB-II", STD 17, RFC 1213, March 1991.

[RFC1902] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Structure of Management Information for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1902, January 1996.

[RFC1903] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Textual Conventions for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1903, January 1996.

Levi, et. al. Standards Track [Page 65]


RFC 2263 SNMPv3 Applications January 1998

[RFC1905] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Protocol Operations for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1905, January 1996.

[RFC1907] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1907, January 1996.

[RFC1908] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Coexistence between Version 1 and Version 2 of the Internet-standard Network Management Framework", RFC 1908, January 1996.

[RFC2261] Harrington, D., and B. Wijnen, "An Architecture for Describing SNMP Management Frameworks", RFC 2261, January 1998.

[RFC2262] Case, J., Harrington, D., and B. Wijnen, "Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)", RFC 2262, January 1998.

[RFC2265] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based Access Control Model for the Simple Network Management Protocol (SNMP)", RFC 2265, January 1998.

Levi, et. al. Standards Track [Page 66]


RFC 2263 SNMPv3 Applications January 1998

12. Editors' Addresses

David B. Levi SNMP Research, Inc. 3001 Kimberlin Heights Road Knoxville, TN 37920-9716 U.S.A.

Phone: +1 423 573 1434 EMail: levi@snmp.com

Paul Meyer Secure Computing Corporation 2675 Long Lake Road Roseville, MN 55113 U.S.A.

Phone: +1 612 628 1592 EMail: paul_meyer@securecomputing.com

Bob Stewart Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 U.S.A.

Phone: +1 603 654 6923 EMail: bstewart@cisco.com

Levi, et. al. Standards Track [Page 67]


RFC 2263 SNMPv3 Applications January 1998

APPENDIX A - Trap Configuration Example

This section describes an example configuration for a Notification Generator application which implements the snmpNotifyBasicCompliance level. The example configuration specifies that the Notification Generator should send notifications to 3 separate managers, using authentication and no privacy for the first 2 managers, and using both authentication and privacy for the third manager.

The configuration consists of three rows in the snmpTargetAddrTable, and two rows in the snmpTargetTable.

      snmpTargetAddrName         SnmpAdminString,
      snmpTargetAddrTDomain      TDomain,
      snmpTargetAddrTAddress     TAddress,
      snmpTargetAddrTimeout      TimeInterval,
      snmpTargetAddrRetryCount   Integer32,
      snmpTargetAddrTagList      SnmpAdminString,
      snmpTargetAddrParams       SnmpAdminString,
      snmpTargetAddrStorageType  StorageType,
      snmpTargetAddrRowStatus    RowStatus

    * snmpTargetAddrName        = "addr1"
      snmpTargetAddrTDomain     = snmpUDPDomain
      snmpTargetAddrTAddress    = 128.1.2.3:162
      snmpTargetAddrTagList     = "group1"
      snmpTargetAddrParams      = "AuthNoPriv joe"
      snmpTargetAddrStorageType = readOnly(5)
      snmpTargetAddrRowStatus   = active(1)

    * snmpTargetAddrName        = "addr2"
      snmpTargetAddrTDomain     = snmpUDPDomain
      snmpTargetAddrTAddress    = 128.2.4.6:162
      snmpTargetAddrTagList     = "group1"
      snmpTargetAddrParams      = "AuthNoPriv-joe"
      snmpTargetAddrStorageType = readOnly(5)
      snmpTargetAddrRowStatus   = active(1)

    * snmpTargetAddrName        = "addr3"
      snmpTargetAddrTDomain     = snmpUDPDomain
      snmpTargetAddrTAddress    = 128.1.2.3:162
      snmpTargetAddrTagList     = "group2"
      snmpTargetAddrParams      = "AuthPriv-bob"
      snmpTargetAddrStorageType = readOnly(5)
      snmpTargetAddrRowStatus   = active(1)

    * snmpTargetParamsName                   = "AuthNoPriv-joe"
      snmpTargetParamsMPModel                = 3

Levi, et. al. Standards Track [Page 68]


RFC 2263 SNMPv3 Applications January 1998

      snmpTargetParamsSecurityModel          = 3 (USM)
      snmpTargetParamsSecurityName           = "joe"
      snmpTargetParamsSecurityLevel          = authNoPriv(2)
      snmpTargetParamsStorageType            = readOnly(5)
      snmpTargetParamsRowStatus              = active(1)

    * snmpTargetParamsName                   = "AuthPriv-bob"
      snmpTargetParamsMPModel                = 3
      snmpTargetParamsSecurityModel          = 3 (USM)
      snmpTargetParamsSecurityName           = "bob"
      snmpTargetParamsSecurityLevel          = authPriv(3)
      snmpTargetParamsStorageType            = readOnly(5)
      snmpTargetParamsRowStatus              = active(1)

    * snmpNotifyName         = "group1"
      snmpNotifyTag          = "group1"
      snmpNotifyType         = trap(1)
      snmpNotifyStorageType  = readOnly(5)
      snmpNotifyRowStatus    = active(1)

    * snmpNotifyName         = "group2"
      snmpNotifyTag          = "group2"
      snmpNotifyType         = trap(1)
      snmpNotifyStorageType  = readOnly(5)
      snmpNotifyRowStatus    = active(1)

These entries define two groups of management targets. The first group contains two management targets:

                            first target      second target
                            ------------      -------------
   messageProcessingModel   SNMPv3            SNMPv3
            securityModel   3 (USM)           3 (USM)
             securityName   "joe"             "joe"
            securityLevel   authNoPriv(2)     authNoPriv(2)
          transportDomain   snmpUDPDomain     snmpUDPDomain
         transportAddress   128.1.2.3:162     128.2.4.6:162

And the second group contains a single management target:

   messageProcessingModel   SNMPv3
            securityLevel   authPriv(3)
            securityModel   3 (USM)
             securityName   "bob"
          transportDomain   snmpUDPDomain
         transportAddress   128.1.5.9:162

Levi, et. al. Standards Track [Page 69]


RFC 2263 SNMPv3 Applications January 1998

B. Full Copyright Statement

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Levi, et. al. Standards Track [Page 70]