US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF) (original) (raw)

[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

INFORMATIONAL
Errata Exist

Internet Engineering Task Force (IETF) D. Eastlake 3rd Request for Comments: 6234 Huawei Obsoletes: 4634 T. Hansen Updates: 3174 AT&T Labs Category: Informational May 2011 ISSN: 2070-1721

                   US Secure Hash Algorithms
               (SHA and SHA-based HMAC and HKDF)

Abstract

The United States of America has adopted a suite of Secure Hash Algorithms (SHAs), including four beyond SHA-1, as part of a Federal Information Processing Standard (FIPS), namely SHA-224, SHA-256, SHA-384, and SHA-512. This document makes open source code performing these SHA hash functions conveniently available to the Internet community. The sample code supports input strings of arbitrary bit length. Much of the text herein was adapted by the authors from FIPS 180-2.

This document replaces RFC 4634, fixing errata and adding code for an HMAC-based extract-and-expand Key Derivation Function, HKDF (RFC 5869). As with RFC 4634, code to perform SHA-based Hashed Message Authentication Codes (HMACs) is also included.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6234.

Eastlake & Hansen Informational [Page 1]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Eastlake & Hansen Informational [Page 2]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

Table of Contents

1. Overview of Contents ............................................4 2. Notation for Bit Strings and Integers ...........................5 3. Operations on Words .............................................6 4. Message Padding and Parsing .....................................8 4.1. SHA-224 and SHA-256 ........................................8 4.2. SHA-384 and SHA-512 ........................................9 5. Functions and Constants Used ...................................10 5.1. SHA-224 and SHA-256 .......................................10 5.2. SHA-384 and SHA-512 .......................................11 6. Computing the Message Digest ...................................12 6.1. SHA-224 and SHA-256 Initialization ........................12 6.2. SHA-224 and SHA-256 Processing ............................13 6.3. SHA-384 and SHA-512 Initialization ........................14 6.4. SHA-384 and SHA-512 Processing ............................15 7. HKDF- and SHA-Based HMACs ......................................17 7.1. SHA-Based HMACs ...........................................17 7.2. HKDF ......................................................17 8. C Code for SHAs, HMAC, and HKDF ................................17 8.1. The Header Files ..........................................21 8.1.1. The .h file ........................................21 8.1.2. stdint-example.h ...................................29 8.1.3. sha-private.h ......................................29 8.2. The SHA Code ..............................................30 8.2.1. sha1.c .............................................30 8.2.2. sha224-256.c .......................................39 8.2.3. sha384-512.c .......................................51 8.2.4. usha.c .............................................73 8.3. The HMAC Code .............................................79 8.4. The HKDF Code .............................................84 8.5. The Test Driver ...........................................91 9. Security Considerations .......................................123 10. Acknowledgements .............................................123 11. References ...................................................124 11.1. Normative References ....................................124 11.2. Informative References ..................................124 Appendix: Changes from RFC 4634...................................126

Eastlake & Hansen Informational [Page 3]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

1. Overview of Contents

This document includes specifications for the United States of America (USA) Federal Information Processing Standard (FIPS) Secure Hash Algorithms (SHAs), code to implement the SHAs, code to implement HMAC (Hashed Message Authentication Code, [[RFC2104](./rfc2104 ""HMAC: Keyed- Hashing for Message Authentication"")]) based on the SHAs, and code to implement HKDF (HMAC-based Key Derivation Function, [[RFC5869](./rfc5869 ""HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"")]) based on HMAC. Specifications for HMAC and HKDF are not included as they appear elsewhere in the RFC series [[RFC2104](./rfc2104 ""HMAC: Keyed- Hashing for Message Authentication"")] [[RFC5869](./rfc5869 ""HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"")].

NOTE: Much of the text below is taken from [[SHS](#ref-SHS ""Secure Hash Standard"")], and the assertions of the security of the hash algorithms described therein are made by the US Government, the author of [[SHS](#ref-SHS ""Secure Hash Standard"")], not by the listed authors of this document. See also [[RFC6194](./rfc6194 ""Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms"")] concerning the security of SHA-1.

The text below specifies Secure Hash Algorithms, SHA-224 [[RFC3874](./rfc3874 ""A 224-bit One-way Hash Function: SHA-224"")], SHA-256, SHA-384, and SHA-512, for computing a condensed representation of a message or a data file. (SHA-1 is specified in [[RFC3174](./rfc3174 ""US Secure Hash Algorithm 1 (SHA1)"")].) When a message of any length < 2^64 bits (for SHA-224 and SHA-256) or < 2^128 bits (for SHA-384 and SHA-512) is input to one of these algorithms, the result is an output called a message digest. The message digests range in length from 224 to 512 bits, depending on the algorithm. Secure Hash Algorithms are typically used with other cryptographic algorithms, such as digital signature algorithms and keyed-hash authentication codes, the generation of random numbers [[RFC4086](./rfc4086 ""Randomness Requirements for Security"")], or in key derivation functions.

The algorithms specified in this document are called secure because it is computationally infeasible to (1) find a message that corresponds to a given message digest, or (2) find two different messages that produce the same message digest. Any change to a message in transit will, with very high probability, result in a different message digest. This will result in a verification failure when the Secure Hash Algorithm is used with a digital signature algorithm or a keyed-hash message authentication algorithm.

The code provided herein supports input strings of arbitrary bit length. SHA-1's sample code from [[RFC3174](./rfc3174 ""US Secure Hash Algorithm 1 (SHA1)"")] has also been updated to handle input strings of arbitrary bit length. Permission is granted for all uses, commercial and non-commercial, of this code.

This document obsoletes [[RFC4634](./rfc4634 ""US Secure Hash Algorithms (SHA and HMAC-SHA)"")], and the changes from that RFC are summarized in the Appendix.

Eastlake & Hansen Informational [Page 4]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

ASN.1 OIDs (Object Identifiers) for the SHA algorithms, taken from [[RFC4055](./rfc4055 ""Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"")], are as follows:

id-sha1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) oiw(14) secsig(3) algorithms(2) 26 } id-sha224 OBJECT IDENTIFIER ::= {{ joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) 4 } id-sha256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) 1 } id-sha384 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) 2 } id-sha512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) 3 }

Section 2 below defines the terminology and functions used as building blocks to form these algorithms. Section 3 describes the fundamental operations on words from which these algorithms are built. Section 4 describes how messages are padded up to an integral multiple of the required block size and then parsed into blocks. Section 5 defines the constants and the composite functions used to specify the hash algorithms. Section 6 gives the actual specification for the SHA-224, SHA-256, SHA-384, and SHA-512 functions. Section 7 provides pointers to the specification of HMAC keyed message authentication codes and to the specification of an extract-and-expand key derivation function based on HMAC.

Section 8 gives sample code for the SHA algorithms, for SHA-based HMACs, and for HMAC-based extract-and-expand key derivation function.

2. Notation for Bit Strings and Integers

The following terminology related to bit strings and integers will be used:

a. A hex digit is an element of the set {0, 1, ... , 9, A, ... , F}. A hex digit is the representation of a 4-bit string. Examples: 7 = 0111, A = 1010.

  b. A word equals a 32-bit or 64-bit string that may be represented
  as a sequence of 8 or 16 hex digits, respectively.  To convert a
  word to hex digits, each 4-bit string is converted to its hex
  equivalent as described in (a) above.  Example:

Eastlake & Hansen Informational [Page 5]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

     1010 0001 0000 0011 1111 1110 0010 0011 = A103FE23.

  Throughout this document, the "big-endian" convention is used when
  expressing both 32-bit and 64-bit words, so that within each word
  the most significant bit is shown in the leftmost bit position.

  c. An integer may be represented as a word or pair of words.

  An integer between 0 and 2^32 - 1 inclusive may be represented as
  a 32-bit word.  The least significant four bits of the integer are
  represented by the rightmost hex digit of the word representation.
  Example: the integer 291 = 2^8+2^5+2^1+2^0 = 256+32+2+1 is
  represented by the hex word 00000123.

  The same holds true for an integer between 0 and 2^64-1 inclusive,
  which may be represented as a 64-bit word.

  If Z is an integer, 0 <= z < 2^64, then z = (2^32)x + y where
  0 <= x < 2^32 and 0 <= y < 2^32.  Since x and y can be represented
  as words X and Y, respectively, z can be represented as the pair
  of words (X,Y).

  Again, the "big-endian" convention is used and the most
  significant word is in the leftmost word position for values
  represented by multiple-words.

  d. block = 512-bit or 1024-bit string.  A block (e.g., B) may be
  represented as a sequence of 32-bit or 64-bit words.

3. Operations on Words

The following logical operators will be applied to words in all four hash operations specified herein. SHA-224 and SHA-256 operate on 32-bit words while SHA-384 and SHA-512 operate on 64-bit words.

In the operations below, x<<n is obtained as follows: discard the leftmost n bits of x and then pad the result with n zeroed bits on the right (the result will still be the same number of bits). Similarly, x>>n is obtained as follows: discard the rightmost n bits of x and then prepend the result with n zeroed bits on the left (the result will still be the same number of bits).

a. Bitwise logical word operations

     X AND Y  =  bitwise logical "and" of  X and Y.

     X OR Y   =  bitwise logical "inclusive-or" of X and Y.

Eastlake & Hansen Informational [Page 6]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

     X XOR Y  =  bitwise logical "exclusive-or" of X and Y.

     NOT X    =  bitwise logical "complement" of X.

     Example:
              01101100101110011101001001111011
        XOR   01100101110000010110100110110111
              --------------------------------
          =   00001001011110001011101111001100

b. The operation X + Y is defined as follows: words X and Y represent w-bit integers x and y, where 0 <= x < 2^w and 0 <= y < 2^w. For positive integers n and m, let

     n mod m

  be the remainder upon dividing n by m.  Compute

     z  =  (x + y) mod 2^w.

  Then 0 <= z < 2^w.  Convert z to a word, Z, and define Z = X + Y.

c. The right shift operation SHR^n(x), where x is a w-bit word and n is an integer with 0 <= n < w, is defined by

     SHR^n(x) = x>>n

d. The rotate right (circular right shift) operation ROTR^n(x), where x is a w-bit word and n is an integer with 0 <= n < w, is defined by

     ROTR^n(x) = (x>>n) OR (x<<(w-n))

e. The rotate left (circular left shift) operation ROTL^n(x), where x is a w-bit word and n is an integer with 0 <= n < w, is defined by

     ROTL^n(X) = (x<<n) OR (x>>(w-n))

  Note the following equivalence relationships, where w is fixed in
  each relationship:

     ROTL^n(x) = ROTR^(w-n)(x)

     ROTR^n(x) = ROTL^(w-n)(x)

Eastlake & Hansen Informational [Page 7]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

4. Message Padding and Parsing

The hash functions specified herein are used to compute a message digest for a message or data file that is provided as input. The message or data file should be considered to be a bit string. The length of the message is the number of bits in the message (the empty message has length 0). If the number of bits in a message is a multiple of 8, for compactness we can represent the message in hex. The purpose of message padding is to make the total length of a padded message a multiple of 512 for SHA-224 and SHA-256 or a multiple of 1024 for SHA-384 and SHA-512.

The following specifies how this padding shall be performed. As a summary, a "1" followed by m "0"s followed by a 64-bit or 128-bit integer are appended to the end of the message to produce a padded message of length 512n or 1024n. The appended integer is the length of the original message. The padded message is then processed by the hash function as n 512-bit or 1024-bit blocks.

4.1. SHA-224 and SHA-256

Suppose a message has length L < 2^64. Before it is input to the hash function, the message is padded on the right as follows:

a. "1" is appended. Example: if the original message is "01010000", this is padded to "010100001".

b. K "0"s are appended where K is the smallest, non-negative solution to the equation

     ( L + 1 + K ) mod 512 = 448

c. Then append the 64-bit block that is L in binary representation. After appending this block, the length of the message will be a multiple of 512 bits.

  Example: Suppose the original message is the bit string

     01100001 01100010 01100011 01100100 01100101

  After step (a) this gives

     01100001 01100010 01100011 01100100 01100101 1

Eastlake & Hansen Informational [Page 8]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

  Since L = 40, the number of bits in the above is 41 and K = 407
  "0"s are appended, making the total now 448.  This gives the
  following in hex:

     61626364 65800000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000

  The 64-bit representation of L = 40 is hex 00000000 00000028.
  Hence the final padded message is the following hex

     61626364 65800000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000028

4.2. SHA-384 and SHA-512

Suppose a message has length L < 2^128. Before it is input to the hash function, the message is padded on the right as follows:

a. "1" is appended. Example: if the original message is "01010000", this is padded to "010100001".

b. K "0"s are appended where K is the smallest, non-negative solution to the equation

     ( L + 1 + K ) mod 1024 = 896

c. Then append the 128-bit block that is L in binary representation. After appending this block, the length of the message will be a multiple of 1024 bits.

  Example: Suppose the original message is the bit string

     01100001 01100010 01100011 01100100 01100101

  After step (a) this gives

     01100001 01100010 01100011 01100100 01100101 1

Eastlake & Hansen Informational [Page 9]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

  Since L = 40, the number of bits in the above is 41 and K = 855
  "0"s are appended, making the total now 896.  This gives the
  following in hex:

     61626364 65800000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000

  The 128-bit representation of L = 40 is hex 00000000 00000000
  00000000 00000028.  Hence the final padded message is the
  following hex:

     61626364 65800000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000000
     00000000 00000000 00000000 00000028

5. Functions and Constants Used

The following subsections give the six logical functions and the table of constants used in each of the hash functions.

5.1. SHA-224 and SHA-256

SHA-224 and SHA-256 use six logical functions, where each function operates on 32-bit words, which are represented as x, y, and z. The result of each function is a new 32-bit word.

  CH( x, y, z) = (x AND y) XOR ( (NOT x) AND z)

  MAJ( x, y, z) = (x AND y) XOR (x AND z) XOR (y AND z)

  BSIG0(x) = ROTR^2(x) XOR ROTR^13(x) XOR ROTR^22(x)

  BSIG1(x) = ROTR^6(x) XOR ROTR^11(x) XOR ROTR^25(x)

  SSIG0(x) = ROTR^7(x) XOR ROTR^18(x) XOR SHR^3(x)

  SSIG1(x) = ROTR^17(x) XOR ROTR^19(x) XOR SHR^10(x)

Eastlake & Hansen Informational [Page 10]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

SHA-224 and SHA-256 use the same sequence of sixty-four constant 32-bit words, K0, K1, ..., K63. These words represent the first 32 bits of the fractional parts of the cube roots of the first sixty- four prime numbers. In hex, these constant words are as follows (from left to right):

  428a2f98 71374491 b5c0fbcf e9b5dba5
  3956c25b 59f111f1 923f82a4 ab1c5ed5
  d807aa98 12835b01 243185be 550c7dc3
  72be5d74 80deb1fe 9bdc06a7 c19bf174
  e49b69c1 efbe4786 0fc19dc6 240ca1cc
  2de92c6f 4a7484aa 5cb0a9dc 76f988da
  983e5152 a831c66d b00327c8 bf597fc7
  c6e00bf3 d5a79147 06ca6351 14292967
  27b70a85 2e1b2138 4d2c6dfc 53380d13
  650a7354 766a0abb 81c2c92e 92722c85
  a2bfe8a1 a81a664b c24b8b70 c76c51a3
  d192e819 d6990624 f40e3585 106aa070
  19a4c116 1e376c08 2748774c 34b0bcb5
  391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3
  748f82ee 78a5636f 84c87814 8cc70208
  90befffa a4506ceb bef9a3f7 c67178f2

5.2. SHA-384 and SHA-512

SHA-384 and SHA-512 each use six logical functions, where each function operates on 64-bit words, which are represented as x, y, and z. The result of each function is a new 64-bit word.

  CH( x, y, z) = (x AND y) XOR ( (NOT x) AND z)

  MAJ( x, y, z) = (x AND y) XOR (x AND z) XOR (y AND z)

  BSIG0(x) = ROTR^28(x) XOR ROTR^34(x) XOR ROTR^39(x)

  BSIG1(x) = ROTR^14(x) XOR ROTR^18(x) XOR ROTR^41(x)

  SSIG0(x) = ROTR^1(x) XOR ROTR^8(x) XOR SHR^7(x)

  SSIG1(x) = ROTR^19(x) XOR ROTR^61(x) XOR SHR^6(x)

SHA-384 and SHA-512 use the same sequence of eighty constant 64-bit words, K0, K1, ... K79. These words represent the first 64 bits of the fractional parts of the cube roots of the first eighty prime numbers. In hex, these constant words are as follows (from left to right):

Eastlake & Hansen Informational [Page 11]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc 3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118 d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2 72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694 e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65 2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5 983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4 c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70 27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df 650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30 d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8 19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8 391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3 748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec 90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178 06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b 28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c 4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

6. Computing the Message Digest

The output of each of the secure hash functions, after being applied to a message of N blocks, is the hash quantity H(N). For SHA-224 and SHA-256, H(i) can be considered to be eight 32-bit words, H(i)0, H(i)1, ... H(i)7. For SHA-384 and SHA-512, it can be considered to be eight 64-bit words, H(i)0, H(i)1, ..., H(i)7.

As described below, the hash words are initialized, modified as each message block is processed, and finally concatenated after processing the last block to yield the output. For SHA-256 and SHA-512, all of the H(N) variables are concatenated while the SHA-224 and SHA-384 hashes are produced by omitting some from the final concatenation.

6.1. SHA-224 and SHA-256 Initialization

For SHA-224, the initial hash value, H(0), consists of the following 32-bit words in hex:

  H(0)0 = c1059ed8
  H(0)1 = 367cd507
  H(0)2 = 3070dd17
  H(0)3 = f70e5939
  H(0)4 = ffc00b31
  H(0)5 = 68581511
  H(0)6 = 64f98fa7
  H(0)7 = befa4fa4

Eastlake & Hansen Informational [Page 12]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

For SHA-256, the initial hash value, H(0), consists of the following eight 32-bit words, in hex. These words were obtained by taking the first 32 bits of the fractional parts of the square roots of the first eight prime numbers.

  H(0)0 = 6a09e667
  H(0)1 = bb67ae85
  H(0)2 = 3c6ef372
  H(0)3 = a54ff53a
  H(0)4 = 510e527f
  H(0)5 = 9b05688c
  H(0)6 = 1f83d9ab
  H(0)7 = 5be0cd19

6.2. SHA-224 and SHA-256 Processing

SHA-224 and SHA-256 perform identical processing on message blocks and differ only in how H(0) is initialized and how they produce their final output. They may be used to hash a message, M, having a length of L bits, where 0 <= L < 2^64. The algorithm uses (1) a message schedule of sixty-four 32-bit words, (2) eight working variables of 32 bits each, and (3) a hash value of eight 32-bit words.

The words of the message schedule are labeled W0, W1, ..., W63. The eight working variables are labeled a, b, c, d, e, f, g, and h. The words of the hash value are labeled H(i)0, H(i)1, ..., H(i)7, which will hold the initial hash value, H(0), replaced by each successive intermediate hash value (after each message block is processed), H(i), and ending with the final hash value, H(N), after all N blocks are processed. They also use two temporary words, T1 and T2.

The input message is padded as described in Section 4.1 above, then parsed into 512-bit blocks that are considered to be composed of sixteen 32-bit words M(i)0, M(i)1, ..., M(i)15. The following computations are then performed for each of the N message blocks. All addition is performed modulo 2^32.

For i = 1 to N

  1. Prepare the message schedule W:
     For t = 0 to 15
        Wt = M(i)t
     For t = 16 to 63
        Wt = SSIG1(W(t-2)) + W(t-7) + SSIG0(w(t-15)) + W(t-16)

Eastlake & Hansen Informational [Page 13]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

  2. Initialize the working variables:
     a = H(i-1)0
     b = H(i-1)1
     c = H(i-1)2
     d = H(i-1)3
     e = H(i-1)4
     f = H(i-1)5
     g = H(i-1)6
     h = H(i-1)7

  3. Perform the main hash computation:
     For t = 0 to 63
        T1 = h + BSIG1(e) + CH(e,f,g) + Kt + Wt
        T2 = BSIG0(a) + MAJ(a,b,c)
        h = g
        g = f
        f = e
        e = d + T1
        d = c
        c = b
        b = a
        a = T1 + T2

  4. Compute the intermediate hash value H(i)
     H(i)0 = a + H(i-1)0
     H(i)1 = b + H(i-1)1
     H(i)2 = c + H(i-1)2
     H(i)3 = d + H(i-1)3
     H(i)4 = e + H(i-1)4
     H(i)5 = f + H(i-1)5
     H(i)6 = g + H(i-1)6
     H(i)7 = h + H(i-1)7

After the above computations have been sequentially performed for all of the blocks in the message, the final output is calculated. For SHA-256, this is the concatenation of all of H(N)0, H(N)1, through H(N)7. For SHA-224, this is the concatenation of H(N)0, H(N)1, through H(N)6.

6.3. SHA-384 and SHA-512 Initialization

For SHA-384, the initial hash value, H(0), consists of the following eight 64-bit words, in hex. These words were obtained by taking the first 64 bits of the fractional parts of the square roots of the ninth through sixteenth prime numbers.

Eastlake & Hansen Informational [Page 14]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

     H(0)0 = cbbb9d5dc1059ed8
     H(0)1 = 629a292a367cd507
     H(0)2 = 9159015a3070dd17
     H(0)3 = 152fecd8f70e5939
     H(0)4 = 67332667ffc00b31
     H(0)5 = 8eb44a8768581511
     H(0)6 = db0c2e0d64f98fa7
     H(0)7 = 47b5481dbefa4fa4

For SHA-512, the initial hash value, H(0), consists of the following eight 64-bit words, in hex. These words were obtained by taking the first 64 bits of the fractional parts of the square roots of the first eight prime numbers.

     H(0)0 = 6a09e667f3bcc908
     H(0)1 = bb67ae8584caa73b
     H(0)2 = 3c6ef372fe94f82b
     H(0)3 = a54ff53a5f1d36f1
     H(0)4 = 510e527fade682d1
     H(0)5 = 9b05688c2b3e6c1f
     H(0)6 = 1f83d9abfb41bd6b
     H(0)7 = 5be0cd19137e2179

6.4. SHA-384 and SHA-512 Processing

SHA-384 and SHA-512 perform identical processing on message blocks and differ only in how H(0) is initialized and how they produce their final output. They may be used to hash a message, M, having a length of L bits, where 0 <= L < 2^128. The algorithm uses (1) a message schedule of eighty 64-bit words, (2) eight working variables of 64 bits each, and (3) a hash value of eight 64-bit words.

The words of the message schedule are labeled W0, W1, ..., W79. The eight working variables are labeled a, b, c, d, e, f, g, and h. The words of the hash value are labeled H(i)0, H(i)1, ..., H(i)7, which will hold the initial hash value, H(0), replaced by each successive intermediate hash value (after each message block is processed), H(i), and ending with the final hash value, H(N) after all N blocks are processed.

The input message is padded as described in Section 4.2 above, then parsed into 1024-bit blocks that are considered to be composed of sixteen 64-bit words M(i)0, M(i)1, ..., M(i)15. The following computations are then performed for each of the N message blocks. All addition is performed modulo 2^64.

Eastlake & Hansen Informational [Page 15]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

For i = 1 to N

  1. Prepare the message schedule W:
     For t = 0 to 15
        Wt = M(i)t
     For t = 16 to 79
        Wt = SSIG1(W(t-2)) + W(t-7) + SSIG0(W(t-15)) + W(t-16)

  2. Initialize the working variables:
     a = H(i-1)0
     b = H(i-1)1
     c = H(i-1)2
     d = H(i-1)3
     e = H(i-1)4
     f = H(i-1)5
     g = H(i-1)6
     h = H(i-1)7

  3. Perform the main hash computation:
     For t = 0 to 79
        T1 = h + BSIG1(e) + CH(e,f,g) + Kt + Wt
        T2 = BSIG0(a) + MAJ(a,b,c)
        h = g
        g = f
        f = e
        e = d + T1
        d = c
        c = b
        b = a
        a = T1 + T2

     4. Compute the intermediate hash value H(i)
        H(i)0 = a + H(i-1)0
        H(i)1 = b + H(i-1)1
        H(i)2 = c + H(i-1)2
        H(i)3 = d + H(i-1)3
        H(i)4 = e + H(i-1)4
        H(i)5 = f + H(i-1)5
        H(i)6 = g + H(i-1)6
        H(i)7 = h + H(i-1)7

After the above computations have been sequentially performed for all of the blocks in the message, the final output is calculated. For SHA-512, this is the concatenation of all of H(N)0, H(N)1, through H(N)7. For SHA-384, this is the concatenation of H(N)0, H(N)1, through H(N)5.

Eastlake & Hansen Informational [Page 16]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

7. HKDF- and SHA-Based HMACs

Below are brief descriptions and pointers to more complete descriptions and code for (1) SHA-based HMACs and (2) an HMAC-based extract-and-expand key derivation function. Both HKDF and HMAC were devised by Hugo Krawczyk.

7.1. SHA-Based HMACs

HMAC is a method for computing a keyed MAC (Message Authentication Code) using a hash function as described in [[RFC2104](./rfc2104 ""HMAC: Keyed- Hashing for Message Authentication"")]. It uses a key to mix in with the input text to produce the final hash.

Sample code is also provided, in Section 8.3 below, to perform HMAC based on any of the SHA algorithms described herein. The sample code found in [[RFC2104](./rfc2104 ""HMAC: Keyed- Hashing for Message Authentication"")] was written in terms of a specified text size. Since SHA is defined in terms of an arbitrary number of bits, the sample HMAC code has been written to allow the text input to HMAC to have an arbitrary number of octets and bits. A fixed-length interface is also provided.

7.2. HKDF

HKDF is a specific Key Derivation Function (KDF), that is, a function of initial keying material from which the KDF derives one or more cryptographically strong secret keys. HKDF, which is described in [[RFC5869](./rfc5869 ""HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"")], is based on HMAC.

Sample code for HKDF is provided in Section 8.4 below.

8. C Code for SHAs, HMAC, and HKDF

Below is a demonstration implementation of these secure hash functions in C. Section 8.1 contains the header file sha.h that declares all constants, structures, and functions used by the SHA and HMAC functions. It includes conditionals based on the state of definition of USE_32BIT_ONLY that, if that symbol is defined at compile time, avoids 64-bit operations. It also contains sha- private.h that provides some declarations common to all the SHA functions. Section 8.2 contains the C code for sha1.c, sha224-256.c, sha384-512.c, and usha.c. Section 8.3 contains the C code for the HMAC functions, and Section 8.4 contains the C code for HKDF. Section 8.5 contains a test driver to exercise the code.

For each of the digest lengths $, there is the following set of constants, a structure, and functions:

Eastlake & Hansen Informational [Page 17]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

Constants: SHA$$$HashSize number of octets in the hash SHA$$$HashSizeBits number of bits in the hash SHA$$$_Message_Block_Size number of octets used in the intermediate message blocks Most functions return an enum value that is one of: shaSuccess(0) on success shaNull(1) when presented with a null pointer parameter shaInputTooLong(2) when the input data is too long shaStateError(3) when SHA$$$Input is called after SHA$$$FinalBits or SHA$$$Result

Structure: typedef SHA$$$Context an opaque structure holding the complete state for producing the hash

Functions: int SHA$$$Reset(SHA$$$Context *context); Reset the hash context state. int SHA$$$Input(SHA$$$Context *context, const uint8_t *octets, unsigned int bytecount); Incorporate bytecount octets into the hash. int SHA$$$FinalBits(SHA$$$Context *, const uint8_t octet, unsigned int bitcount); Incorporate bitcount bits into the hash. The bits are in the upper portion of the octet. SHA$$$Input() cannot be called after this. int SHA$$$Result(SHA$$$Context *, uint8_t Message_Digest[SHA$$$HashSize]); Do the final calculations on the hash and copy the value into Message_Digest.

In addition, functions with the prefix USHA are provided that take a SHAversion value (SHA$$$) to select the SHA function suite. They add the following constants, structure, and functions:

Constants: shaBadParam(4) constant returned by USHA functions when presented with a bad SHAversion (SHA$$$) parameter or other illegal parameter values USAMaxHashSize maximum of the SHA hash sizes SHA$$$ SHAversion enumeration values, used by USHA, HMAC, and HKDF functions to select the SHA function suite

Eastlake & Hansen Informational [Page 18]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

Structure: typedef USHAContext an opaque structure holding the complete state for producing the hash

Functions: int USHAReset(USHAContext context, SHAversion whichSha); Reset the hash context state. int USHAInput(USHAContext context, const uint8_t *bytes, unsigned int bytecount); Incorporate bytecount octets into the hash. int USHAFinalBits(USHAContext *context, const uint8_t bits, unsigned int bitcount); Incorporate bitcount bits into the hash. int USHAResult(USHAContext *context, uint8_t Message_Digest[USHAMaxHashSize]); Do the final calculations on the hash and copy the value into Message_Digest. Octets in Message_Digest beyond USHAHashSize(whichSha) are left untouched. int USHAHashSize(enum SHAversion whichSha); The number of octets in the given hash. int USHAHashSizeBits(enum SHAversion whichSha); The number of bits in the given hash. int USHABlockSize(enum SHAversion whichSha); The internal block size for the given hash. const char *USHAHashName(enum SHAversion whichSha); This function will return the name of the given SHA algorithm as a string.

The HMAC functions follow the same pattern to allow any length of text input to be used.

Structure: typedef HMACContext an opaque structure holding the complete state for producing the keyed message digest (MAC)

Functions: int hmacReset(HMACContext *ctx, enum SHAversion whichSha, const unsigned char *key, int key_len); Reset the MAC context state. int hmacInput(HMACContext *ctx, const unsigned char *text, int text_len); Incorporate text_len octets into the MAC. int hmacFinalBits(HMACContext *ctx, const uint8_t bits, unsigned int bitcount); Incorporate bitcount bits into the MAC. int hmacResult(HMACContext *ctx, uint8_t Message_Digest[USHAMaxHashSize]);

Eastlake & Hansen Informational [Page 19]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

        Do the final calculations on the MAC and copy the value into
        Message_Digest.  Octets in Message_Digest beyond
        USHAHashSize(whichSha) are left untouched.

In addition, a combined interface is provided, similar to that shown in [[RFC2104](./rfc2104 ""HMAC: Keyed- Hashing for Message Authentication"")], that allows a fixed-length text input to be used.

  int hmac(SHAversion whichSha,
              const unsigned char *text, int text_len,
              const unsigned char *key, int key_len,
              uint8_t Message_Digest[USHAMaxHashSize]);
        Calculate the given digest for the given text and key, and
        return the resulting MAC.  Octets in Message_Digest beyond
        USHAHashSize(whichSha) are left untouched.

The HKDF functions follow the same pattern to allow any length of text input to be used.

Structure: typedef HKDFContext an opaque structure holding the complete state for producing the keying material Functions: int hkdfReset(HKDFContext *context, enum SHAversion whichSha, const unsigned char *salt, int salt_len) Reset the key derivation state and initialize it with the salt_len octets of the optional salt. int hkdfInput(HKDFContext *context, const unsigned char *ikm, int ikm_len) Incorporate ikm_len octets into the entropy extractor. int hkdfFinalBits(HKDFContext *context, uint8_t ikm_bits, unsigned int ikm_bit_count) Incorporate ikm_bit_count bits into the entropy extractor. int hkdfResult(HKDFContext *context, uint8_t prk[USHAMaxHashSize], const unsigned char *info, int info_len, uint8_t okm[ ], int okm_len) Finish the HKDF extraction and perform the final HKDF expansion, storing the okm_len octets into output keying material (okm). Optionally store the pseudo-random key (prk) that is generated internally.

In addition, combined interfaces are provided, similar to that shown in [[RFC5869](./rfc5869 ""HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"")], that allows a fixed-length text input to be used.

  int hkdfExtract(SHAversion whichSha,
              const unsigned char *salt, int salt_len,
              const unsigned char *ikm, int ikm_len,
              uint8_t prk[USHAMaxHashSize])

Eastlake & Hansen Informational [Page 20]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

        Perform HKDF extraction, combining the salt_len octets of
        the optional salt with the ikm_len octets of the input
        keying material (ikm) to form the pseudo-random key prk.
        The output prk must be large enough to hold the octets
        appropriate for the given hash type.

  int hkdfExpand(SHAversion whichSha,
              const uint8_t prk[ ], int prk_len,
              const unsigned char *info, int info_len,
              uint8_t okm[ ], int okm_len)
        Perform HKDF expansion, combining the prk_len octets of the
        pseudo-random key prk with the info_len octets of info to
        form the okm_len octets stored in okm.

  int hkdf(SHAversion whichSha,
              const unsigned char *salt, int salt_len,
              const unsigned char *ikm, int ikm_len,
              const unsigned char *info, int info_len,
              uint8_t okm[ ], int okm_len)
        This combined interface performs both HKDF extraction and
        expansion.  The variables are the same as in hkdfExtract()
        and hkdfExpand().

8.1. The Header Files

8.1.1. The .h file

The following sha.h file, as stated in the comments within the file, assumes that <stdint.h> is available on your system. If it is not, you should change to including <stdint-example.h>, provided in Section 8.1.2, or the like.

/**************************** sha.h ****************************/ /***************** See RFC 6234 for details. *******************/ /* Copyright (c) 2011 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Eastlake & Hansen Informational [Page 21]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef SHA_H #define SHA_H

/*

Eastlake & Hansen Informational [Page 22]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

#include <stdint.h> /*

#ifndef SHA_enum #define SHA_enum /*

#endif /* SHA_enum */

/*

Eastlake & Hansen Informational [Page 23]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

SHA1HashSize = 20, SHA224HashSize = 28, SHA256HashSize = 32,
SHA384HashSize = 48, SHA512HashSize = 64,
USHAMaxHashSize = SHA512HashSize,

SHA1HashSizeBits = 160, SHA224HashSizeBits = 224,
SHA256HashSizeBits = 256, SHA384HashSizeBits = 384,
SHA512HashSizeBits = 512, USHAMaxHashSizeBits = SHA512HashSizeBits

};

/*

/*

} SHA1Context;

/*

Eastlake & Hansen Informational [Page 24]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

int Computed;                   /* Is the hash computed? */
int Corrupted;                  /* Cumulative corruption code */

} SHA256Context;

/*

#ifdef USE_32BIT_ONLY uint32_t Intermediate_Hash[SHA512HashSize/4]; /* Message Digest / uint32_t Length[4]; / Message length in bits / #else / !USE_32BIT_ONLY / uint64_t Intermediate_Hash[SHA512HashSize/8]; / Message Digest / uint64_t Length_High, Length_Low; / Message length in bits / #endif / USE_32BIT_ONLY */

int_least16_t Message_Block_Index;  /* Message_Block array index */
                                    /* 1024-bit message blocks */
uint8_t Message_Block[SHA512_Message_Block_Size];

int Computed;                   /* Is the hash computed?*/
int Corrupted;                  /* Cumulative corruption code */

} SHA512Context;

/*

/*

/*

Eastlake & Hansen Informational [Page 25]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

} USHAContext;

/*

} HMACContext;

/*

/*

/* SHA-1 */ extern int SHA1Reset(SHA1Context *); extern int SHA1Input(SHA1Context *, const uint8_t *bytes, unsigned int bytecount); extern int SHA1FinalBits(SHA1Context *, uint8_t bits, unsigned int bit_count); extern int SHA1Result(SHA1Context *, uint8_t Message_Digest[SHA1HashSize]);

Eastlake & Hansen Informational [Page 26]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/* SHA-224 */ extern int SHA224Reset(SHA224Context *); extern int SHA224Input(SHA224Context *, const uint8_t *bytes, unsigned int bytecount); extern int SHA224FinalBits(SHA224Context *, uint8_t bits, unsigned int bit_count); extern int SHA224Result(SHA224Context *, uint8_t Message_Digest[SHA224HashSize]);

/* SHA-256 */ extern int SHA256Reset(SHA256Context *); extern int SHA256Input(SHA256Context *, const uint8_t *bytes, unsigned int bytecount); extern int SHA256FinalBits(SHA256Context *, uint8_t bits, unsigned int bit_count); extern int SHA256Result(SHA256Context *, uint8_t Message_Digest[SHA256HashSize]);

/* SHA-384 */ extern int SHA384Reset(SHA384Context *); extern int SHA384Input(SHA384Context *, const uint8_t *bytes, unsigned int bytecount); extern int SHA384FinalBits(SHA384Context *, uint8_t bits, unsigned int bit_count); extern int SHA384Result(SHA384Context *, uint8_t Message_Digest[SHA384HashSize]);

/* SHA-512 */ extern int SHA512Reset(SHA512Context *); extern int SHA512Input(SHA512Context *, const uint8_t *bytes, unsigned int bytecount); extern int SHA512FinalBits(SHA512Context *, uint8_t bits, unsigned int bit_count); extern int SHA512Result(SHA512Context *, uint8_t Message_Digest[SHA512HashSize]);

/* Unified SHA functions, chosen by whichSha */ extern int USHAReset(USHAContext *context, SHAversion whichSha); extern int USHAInput(USHAContext *context, const uint8_t *bytes, unsigned int bytecount); extern int USHAFinalBits(USHAContext *context, uint8_t bits, unsigned int bit_count); extern int USHAResult(USHAContext *context, uint8_t Message_Digest[USHAMaxHashSize]); extern int USHABlockSize(enum SHAversion whichSha); extern int USHAHashSize(enum SHAversion whichSha); extern int USHAHashSizeBits(enum SHAversion whichSha); extern const char *USHAHashName(enum SHAversion whichSha);

Eastlake & Hansen Informational [Page 27]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

/*

extern int hmacInput(HMACContext *context, const unsigned char *text, int text_len); extern int hmacFinalBits(HMACContext *context, uint8_t bits, unsigned int bit_count); extern int hmacResult(HMACContext *context, uint8_t digest[USHAMaxHashSize]);

/*

extern int hkdfExtract(SHAversion whichSha, const unsigned char *salt, int salt_len, const unsigned char *ikm, int ikm_len, uint8_t prk[USHAMaxHashSize]); extern int hkdfExpand(SHAversion whichSha, const uint8_t prk[ ], int prk_len, const unsigned char *info, int info_len, uint8_t okm[ ], int okm_len);

/*

Eastlake & Hansen Informational [Page 28]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

extern int hkdfInput(HKDFContext *context, const unsigned char *ikm, int ikm_len); extern int hkdfFinalBits(HKDFContext *context, uint8_t ikm_bits, unsigned int ikm_bit_count); extern int hkdfResult(HKDFContext *context, uint8_t prk[USHAMaxHashSize], const unsigned char info, int info_len, uint8_t okm[USHAMaxHashSize], int okm_len); #endif / SHA_H */

8.1.2. stdint-example.h

If your system does not have <stdint.h>, the following should be adequate as a substitute for compiling the other code in this document.

/*********************** stdint-example.h **********************/ /**** Use this file if your system does not have a stdint.h. / /************** See RFC 6234 for details. *******************/ #ifndef STDINT_H #define STDINT_H

typedef unsigned long long uint64_t; /* unsigned 64-bit integer / typedef unsigned int uint32_t; / unsigned 32-bit integer / typedef unsigned char uint8_t; / unsigned 8-bit integer / / (i.e., unsigned char) / typedef int int_least32_t; / integer of >= 32 bits / typedef short int_least16_t; / integer of >= 16 bits */

#endif /* STDINT_H */

8.1.3. sha-private.h

The sha-private.h header file contains definitions that should only be needed internally in the other code in this document. These definitions should not be needed in application code calling the code provided in this document.

/************************ sha-private.h ************************/ /***************** See RFC 6234 for details. *******************/ #ifndef _SHA_PRIVATE__H #define _SHA_PRIVATE__H /*

Eastlake & Hansen Informational [Page 29]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

#ifndef USE_MODIFIED_MACROS #define SHA_Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define SHA_Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #else /* USE_MODIFIED_MACROS / /

#define SHA_Ch(x, y, z) (((x) & ((y) ^ (z))) ^ (z)) #define SHA_Maj(x, y, z) (((x) & ((y) | (z))) | ((y) & (z)))

#endif /* USE_MODIFIED_MACROS */

#define SHA_Parity(x, y, z) ((x) ^ (y) ^ (z))

#endif /* _SHA_PRIVATE__H */

8.2. The SHA Code

This code is primarily intended as expository reference code and could be optimized further. For example, the assignment rotations through the variables a, b, ..., h could be treated as a cycle and the loop unrolled, rather than doing the explicit copying.

Note that there are alternative representations of the Ch() and Maj() functions controlled by an ifdef.

8.2.1. sha1.c

/**************************** sha1.c ***************************/ /***************** See RFC 6234 for details. *******************/ /* Copyright (c) 2011 IETF Trust and the persons identified as / / authors of the code. All rights reserved. / / See sha.h for terms of use and redistribution. */

/*

Eastlake & Hansen Informational [Page 30]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

*/

#include "sha.h" #include "sha-private.h"

/*

#define SHA1_ROTL(bits,word)
(((word) << (bits)) | ((word) >> (32-(bits))))

/*

#define SHA1AddLength(context, length)
(addTemp = (context)->Length_Low,
(context)->Corrupted =
(((context)->Length_Low += (length)) < addTemp) &&
(++(context)->Length_High == 0) ? shaInputTooLong
: (context)->Corrupted )

/* Local Function Prototypes */ static void SHA1ProcessMessageBlock(SHA1Context *context); static void SHA1Finalize(SHA1Context *context, uint8_t Pad_Byte); static void SHA1PadMessage(SHA1Context *context, uint8_t Pad_Byte);

Eastlake & Hansen Informational [Page 31]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

}

/*

Eastlake & Hansen Informational [Page 32]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

}

/*

Eastlake & Hansen Informational [Page 33]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

*/ int SHA1FinalBits(SHA1Context context, uint8_t message_bits, unsigned int length) { static uint8_t masks[8] = { / 0 0b00000000 / 0x00, / 1 0b10000000 / 0x80, / 2 0b11000000 / 0xC0, / 3 0b11100000 / 0xE0, / 4 0b11110000 / 0xF0, / 5 0b11111000 / 0xF8, / 6 0b11111100 / 0xFC, / 7 0b11111110 */ 0xFE };

static uint8_t markbit[8] = { /* 0 0b10000000 / 0x80, / 1 0b01000000 / 0x40, / 2 0b00100000 / 0x20, / 3 0b00010000 / 0x10, / 4 0b00001000 / 0x08, / 5 0b00000100 / 0x04, / 6 0b00000010 / 0x02, / 7 0b00000001 */ 0x01 };

if (!context) return shaNull; if (!length) return shaSuccess; if (context->Corrupted) return context->Corrupted; if (context->Computed) return context->Corrupted = shaStateError; if (length >= 8) return context->Corrupted = shaBadParam;

SHA1AddLength(context, length); SHA1Finalize(context, (uint8_t) ((message_bits & masks[length]) | markbit[length]));

return context->Corrupted; }

/*

Eastlake & Hansen Informational [Page 34]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

}

/*

Eastlake & Hansen Informational [Page 35]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

int t; /* Loop counter / uint32_t temp; / Temporary word value / uint32_t W[80]; / Word sequence / uint32_t A, B, C, D, E; / Word buffers */

/*

for (t = 16; t < 80; t++) W[t] = SHA1_ROTL(1, W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);

A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4];

for (t = 0; t < 20; t++) { temp = SHA1_ROTL(5,A) + SHA_Ch(B, C, D) + E + W[t] + K[0]; E = D; D = C; C = SHA1_ROTL(30,B); B = A; A = temp; }

for (t = 20; t < 40; t++) { temp = SHA1_ROTL(5,A) + SHA_Parity(B, C, D) + E + W[t] + K[1]; E = D; D = C; C = SHA1_ROTL(30,B); B = A; A = temp; }

for (t = 40; t < 60; t++) { temp = SHA1_ROTL(5,A) + SHA_Maj(B, C, D) + E + W[t] + K[2]; E = D; D = C; C = SHA1_ROTL(30,B); B = A;

Eastlake & Hansen Informational [Page 36]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

A = temp;

}

for (t = 60; t < 80; t++) { temp = SHA1_ROTL(5,A) + SHA_Parity(B, C, D) + E + W[t] + K[3]; E = D; D = C; C = SHA1_ROTL(30,B); B = A; A = temp; }

context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Message_Block_Index = 0; }

/*

Eastlake & Hansen Informational [Page 37]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

context->Computed = 1; }

/*

SHA1ProcessMessageBlock(context);

} else context->Message_Block[context->Message_Block_Index++] = Pad_Byte;

while (context->Message_Block_Index < (SHA1_Message_Block_Size - 8)) context->Message_Block[context->Message_Block_Index++] = 0;

Eastlake & Hansen Informational [Page 38]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

SHA1ProcessMessageBlock(context); }

8.2.2. sha224-256.c

/************************* sha224-256.c ************************/ /***************** See RFC 6234 for details. *******************/ /* Copyright (c) 2011 IETF Trust and the persons identified as / / authors of the code. All rights reserved. / / See sha.h for terms of use and redistribution. */

/*

Eastlake & Hansen Informational [Page 39]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

#include "sha.h" #include "sha-private.h"

/* Define the SHA shift, rotate left, and rotate right macros */ #define SHA256_SHR(bits,word) ((word) >> (bits)) #define SHA256_ROTL(bits,word)
(((word) << (bits)) | ((word) >> (32-(bits)))) #define SHA256_ROTR(bits,word)
(((word) >> (bits)) | ((word) << (32-(bits))))

/* Define the SHA SIGMA and sigma macros */ #define SHA256_SIGMA0(word)
(SHA256_ROTR( 2,word) ^ SHA256_ROTR(13,word) ^ SHA256_ROTR(22,word)) #define SHA256_SIGMA1(word)
(SHA256_ROTR( 6,word) ^ SHA256_ROTR(11,word) ^ SHA256_ROTR(25,word)) #define SHA256_sigma0(word)
(SHA256_ROTR( 7,word) ^ SHA256_ROTR(18,word) ^ SHA256_SHR( 3,word)) #define SHA256_sigma1(word)
(SHA256_ROTR(17,word) ^ SHA256_ROTR(19,word) ^ SHA256_SHR(10,word))

/*

#define SHA224_256AddLength(context, length)
(addTemp = (context)->Length_Low, (context)->Corrupted =
(((context)->Length_Low += (length)) < addTemp) &&
(++(context)->Length_High == 0) ? shaInputTooLong :
(context)->Corrupted )

/* Local Function Prototypes */ static int SHA224_256Reset(SHA256Context *context, uint32_t *H0); static void SHA224_256ProcessMessageBlock(SHA256Context *context); static void SHA224_256Finalize(SHA256Context *context, uint8_t Pad_Byte); static void SHA224_256PadMessage(SHA256Context *context,

Eastlake & Hansen Informational [Page 40]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

uint8_t Pad_Byte); static int SHA224_256ResultN(SHA256Context *context, uint8_t Message_Digest[ ], int HashSize);

/* Initial Hash Values: FIPS 180-3 section 5.3.2 */ static uint32_t SHA224_H0[SHA256HashSize/4] = { 0xC1059ED8, 0x367CD507, 0x3070DD17, 0xF70E5939, 0xFFC00B31, 0x68581511, 0x64F98FA7, 0xBEFA4FA4 };

/* Initial Hash Values: FIPS 180-3 section 5.3.3 */ static uint32_t SHA256_H0[SHA256HashSize/4] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 };

/*

/*

Eastlake & Hansen Informational [Page 41]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

{ return SHA256FinalBits(context, message_bits, length); }

/*

Eastlake & Hansen Informational [Page 42]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

/*

Eastlake & Hansen Informational [Page 43]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

while (length--) { context->Message_Block[context->Message_Block_Index++] = *message_array;

if ((SHA224_256AddLength(context, 8) == shaSuccess) &&
  (context->Message_Block_Index == SHA256_Message_Block_Size))
  SHA224_256ProcessMessageBlock(context);

message_array++;

}

return context->Corrupted;

}

/*

Eastlake & Hansen Informational [Page 44]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

*/ int SHA256FinalBits(SHA256Context context, uint8_t message_bits, unsigned int length) { static uint8_t masks[8] = { / 0 0b00000000 / 0x00, / 1 0b10000000 / 0x80, / 2 0b11000000 / 0xC0, / 3 0b11100000 / 0xE0, / 4 0b11110000 / 0xF0, / 5 0b11111000 / 0xF8, / 6 0b11111100 / 0xFC, / 7 0b11111110 / 0xFE }; static uint8_t markbit[8] = { / 0 0b10000000 / 0x80, / 1 0b01000000 / 0x40, / 2 0b00100000 / 0x20, / 3 0b00010000 / 0x10, / 4 0b00001000 / 0x08, / 5 0b00000100 / 0x04, / 6 0b00000010 / 0x02, / 7 0b00000001 */ 0x01 };

if (!context) return shaNull; if (!length) return shaSuccess; if (context->Corrupted) return context->Corrupted; if (context->Computed) return context->Corrupted = shaStateError; if (length >= 8) return context->Corrupted = shaBadParam;

SHA224_256AddLength(context, length); SHA224_256Finalize(context, (uint8_t) ((message_bits & masks[length]) | markbit[length]));

return context->Corrupted; }

/*

Eastlake & Hansen Informational [Page 45]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

*/ int SHA256Result(SHA256Context *context, uint8_t Message_Digest[SHA256HashSize]) { return SHA224_256ResultN(context, Message_Digest, SHA256HashSize); }

/*

context->Length_High = context->Length_Low = 0; context->Message_Block_Index = 0;

context->Intermediate_Hash[0] = H0[0]; context->Intermediate_Hash[1] = H0[1]; context->Intermediate_Hash[2] = H0[2]; context->Intermediate_Hash[3] = H0[3]; context->Intermediate_Hash[4] = H0[4]; context->Intermediate_Hash[5] = H0[5]; context->Intermediate_Hash[6] = H0[6]; context->Intermediate_Hash[7] = H0[7];

context->Computed = 0; context->Corrupted = shaSuccess;

return shaSuccess; }

/*

Eastlake & Hansen Informational [Page 46]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

uint32_t temp1, temp2; /* Temporary word value / uint32_t W[64]; / Word sequence / uint32_t A, B, C, D, E, F, G, H; / Word buffers */

/*

Eastlake & Hansen Informational [Page 47]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

for (t = 16; t < 64; t++) W[t] = SHA256_sigma1(W[t-2]) + W[t-7] + SHA256_sigma0(W[t-15]) + W[t-16];

A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4]; F = context->Intermediate_Hash[5]; G = context->Intermediate_Hash[6]; H = context->Intermediate_Hash[7];

for (t = 0; t < 64; t++) { temp1 = H + SHA256_SIGMA1(E) + SHA_Ch(E,F,G) + K[t] + W[t]; temp2 = SHA256_SIGMA0(A) + SHA_Maj(A,B,C); H = G; G = F; F = E; E = D + temp1; D = C; C = B; B = A; A = temp1 + temp2; }

context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Intermediate_Hash[5] += F; context->Intermediate_Hash[6] += G; context->Intermediate_Hash[7] += H;

context->Message_Block_Index = 0; }

/*

Eastlake & Hansen Informational [Page 48]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

Eastlake & Hansen Informational [Page 49]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

while (context->Message_Block_Index < (SHA256_Message_Block_Size-8)) context->Message_Block[context->Message_Block_Index++] = 0;

/*

SHA224_256ProcessMessageBlock(context); }

/*

Eastlake & Hansen Informational [Page 50]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

if (!context) return shaNull; if (!Message_Digest) return shaNull; if (context->Corrupted) return context->Corrupted;

if (!context->Computed) SHA224_256Finalize(context, 0x80);

for (i = 0; i < HashSize; ++i) Message_Digest[i] = (uint8_t) (context->Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) ));

return shaSuccess; }

8.2.3. sha384-512.c

/************************* sha384-512.c ************************/ /***************** See RFC 6234 for details. *******************/ /* Copyright (c) 2011 IETF Trust and the persons identified as / / authors of the code. All rights reserved. / / See sha.h for terms of use and redistribution. */

/*

Eastlake & Hansen Informational [Page 51]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

#include "sha.h"

#ifdef USE_32BIT_ONLY /*

/*

#define SHA512_SHR(bits, word, ret) (
/* (((uint64_t)((word))) >> (bits)) */
(ret)[0] = (((bits) < 32) && ((bits) >= 0)) ?
((word)[0] >> (bits)) : 0,
(ret)[1] = ((bits) > 32) ? ((word)[0] >> ((bits) - 32)) :
((bits) == 32) ? (word)[0] :
((bits) >= 0) ?
(((word)[0] << (32 - (bits))) |
((word)[1] >> (bits))) : 0 )

#define SHA512_SHL(bits, word, ret) (
/* (((uint64_t)(word)) << (bits)) */
(ret)[0] = ((bits) > 32) ? ((word)[1] << ((bits) - 32)) : \

Eastlake & Hansen Informational [Page 52]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

     ((bits) == 32) ? (word)[1] :                          \
     ((bits) >= 0) ?                                       \
       (((word)[0] << (bits)) |                            \
       ((word)[1] >> (32 - (bits)))) :                     \
     0,                                                    \
(ret)[1] = (((bits) < 32) && ((bits) >= 0)) ?              \
    ((word)[1] << (bits)) : 0 )

/*

#define SHA512_OR(word1, word2, ret) (
(ret)[0] = (word1)[0] | (word2)[0],
(ret)[1] = (word1)[1] | (word2)[1] )

/*

#define SHA512_XOR(word1, word2, ret) (
(ret)[0] = (word1)[0] ^ (word2)[0],
(ret)[1] = (word1)[1] ^ (word2)[1] )

/*

#define SHA512_AND(word1, word2, ret) (
(ret)[0] = (word1)[0] & (word2)[0],
(ret)[1] = (word1)[1] & (word2)[1] )

/*

#define SHA512_TILDA(word, ret)
( (ret)[0] = ~(word)[0], (ret)[1] = ~(word)[1] )

/*

#define SHA512_ADD(word1, word2, ret) (
(ret)[1] = (word1)[1], (ret)[1] += (word2)[1],
(ret)[0] = (word1)[0] + (word2)[0] + ((ret)[1] < (word1)[1]) )

/*

#define SHA512_ADDTO4(word1, word2) (
ADDTO4_temp = (word1)[3], \

Eastlake & Hansen Informational [Page 53]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

(word1)[3] += (word2)[3],                                  \
ADDTO4_temp2 = (word1)[2],                                 \
(word1)[2] += (word2)[2] + ((word1)[3] < ADDTO4_temp),     \
ADDTO4_temp = (word1)[1],                                  \
(word1)[1] += (word2)[1] + ((word1)[2] < ADDTO4_temp2),    \
(word1)[0] += (word2)[0] + ((word1)[1] < ADDTO4_temp) )

/*

#define SHA512_ADDTO2(word1, word2) (
ADDTO2_temp = (word1)[1],
(word1)[1] += (word2)[1],
(word1)[0] += (word2)[0] + ((word1)[1] < ADDTO2_temp) )

/*

#define SHA512_ROTR(bits, word, ret) (
SHA512_SHR((bits), (word), ROTR_temp1),
SHA512_SHL(64-(bits), (word), ROTR_temp2),
SHA512_OR(ROTR_temp1, ROTR_temp2, (ret)) )

/*

#define SHA512_SIGMA0(word, ret) (
SHA512_ROTR(28, (word), SIGMA0_temp1),
SHA512_ROTR(34, (word), SIGMA0_temp2),
SHA512_ROTR(39, (word), SIGMA0_temp3),
SHA512_XOR(SIGMA0_temp2, SIGMA0_temp3, SIGMA0_temp4),
SHA512_XOR(SIGMA0_temp1, SIGMA0_temp4, (ret)) )

/*

#define SHA512_SIGMA1(word, ret) (
SHA512_ROTR(14, (word), SIGMA1_temp1),
SHA512_ROTR(18, (word), SIGMA1_temp2),
SHA512_ROTR(41, (word), SIGMA1_temp3), \

Eastlake & Hansen Informational [Page 54]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

SHA512_XOR(SIGMA1_temp2, SIGMA1_temp3, SIGMA1_temp4),      \
SHA512_XOR(SIGMA1_temp1, SIGMA1_temp4, (ret)) )

/*

#define SHA512_sigma0(word, ret) (
SHA512_ROTR( 1, (word), sigma0_temp1),
SHA512_ROTR( 8, (word), sigma0_temp2),
SHA512_SHR( 7, (word), sigma0_temp3),
SHA512_XOR(sigma0_temp2, sigma0_temp3, sigma0_temp4),
SHA512_XOR(sigma0_temp1, sigma0_temp4, (ret)) )

/*

#define SHA512_sigma1(word, ret) (
SHA512_ROTR(19, (word), sigma1_temp1),
SHA512_ROTR(61, (word), sigma1_temp2),
SHA512_SHR( 6, (word), sigma1_temp3),
SHA512_XOR(sigma1_temp2, sigma1_temp3, sigma1_temp4),
SHA512_XOR(sigma1_temp1, sigma1_temp4, (ret)) )

#ifndef USE_MODIFIED_MACROS /*

#define SHA_Ch(x, y, z, ret) (
SHA512_AND(x, y, Ch_temp1),
SHA512_TILDA(x, Ch_temp2),
SHA512_AND(Ch_temp2, z, Ch_temp3),
SHA512_XOR(Ch_temp1, Ch_temp3, (ret)) )

/*

#define SHA_Maj(x, y, z, ret) (
SHA512_AND(x, y, Maj_temp1),
SHA512_AND(x, z, Maj_temp2),
SHA512_AND(y, z, Maj_temp3), \

Eastlake & Hansen Informational [Page 55]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

SHA512_XOR(Maj_temp2, Maj_temp3, Maj_temp4),               \
SHA512_XOR(Maj_temp1, Maj_temp4, (ret)) )

#else /* !USE_MODIFIED_MACROS / /

#define SHA_Ch(x, y, z, ret) (
(ret)[0] = (((x)[0] & ((y)[0] ^ (z)[0])) ^ (z)[0]),
(ret)[1] = (((x)[1] & ((y)[1] ^ (z)[1])) ^ (z)[1]) )

/*

#define SHA_Maj(x, y, z, ret) (
ret[0] = (((x)[0] & ((y)[0] | (z)[0])) | ((y)[0] & (z)[0])),
ret[1] = (((x)[1] & ((y)[1] | (z)[1])) | ((y)[1] & (z)[1])) ) #endif /* USE_MODIFIED_MACROS */

/*

#define SHA384_512AddLength(context, length) (
addTemp[3] = (length), SHA512_ADDTO4((context)->Length, addTemp),
(context)->Corrupted = (((context)->Length[3] < (length)) &&
((context)->Length[2] == 0) && ((context)->Length[1] == 0) &&
((context)->Length[0] == 0)) ? shaInputTooLong :
(context)->Corrupted )

/* Local Function Prototypes */ static int SHA384_512Reset(SHA512Context *context, uint32_t H0[SHA512HashSize/4]); static void SHA384_512ProcessMessageBlock(SHA512Context *context); static void SHA384_512Finalize(SHA512Context *context, uint8_t Pad_Byte); static void SHA384_512PadMessage(SHA512Context *context, uint8_t Pad_Byte); static int SHA384_512ResultN( SHA512Context *context, uint8_t Message_Digest[ ], int HashSize);

/* Initial Hash Values: FIPS 180-3 sections 5.3.4 and 5.3.5 */ static uint32_t SHA384_H0[SHA512HashSize/4] = { 0xCBBB9D5D, 0xC1059ED8, 0x629A292A, 0x367CD507, 0x9159015A,

Eastlake & Hansen Informational [Page 56]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

0x3070DD17, 0x152FECD8, 0xF70E5939, 0x67332667, 0xFFC00B31,
0x8EB44A87, 0x68581511, 0xDB0C2E0D, 0x64F98FA7, 0x47B5481D,
0xBEFA4FA4

}; static uint32_t SHA512_H0[SHA512HashSize/4] = { 0x6A09E667, 0xF3BCC908, 0xBB67AE85, 0x84CAA73B, 0x3C6EF372, 0xFE94F82B, 0xA54FF53A, 0x5F1D36F1, 0x510E527F, 0xADE682D1, 0x9B05688C, 0x2B3E6C1F, 0x1F83D9AB, 0xFB41BD6B, 0x5BE0CD19, 0x137E2179 };

#else /* !USE_32BIT_ONLY */

#include "sha-private.h"

/* Define the SHA shift, rotate left and rotate right macros */ #define SHA512_SHR(bits,word) (((uint64_t)(word)) >> (bits)) #define SHA512_ROTR(bits,word) ((((uint64_t)(word)) >> (bits)) |
(((uint64_t)(word)) << (64-(bits))))

/*

#define SHA512_SIGMA0(word)
(SHA512_ROTR(28,word) ^ SHA512_ROTR(34,word) ^ SHA512_ROTR(39,word)) #define SHA512_SIGMA1(word)
(SHA512_ROTR(14,word) ^ SHA512_ROTR(18,word) ^ SHA512_ROTR(41,word)) #define SHA512_sigma0(word)
(SHA512_ROTR( 1,word) ^ SHA512_ROTR( 8,word) ^ SHA512_SHR( 7,word)) #define SHA512_sigma1(word)
(SHA512_ROTR(19,word) ^ SHA512_ROTR(61,word) ^ SHA512_SHR( 6,word))

/*

#define SHA384_512AddLength(context, length)
(addTemp = context->Length_Low, context->Corrupted =
((context->Length_Low += length) < addTemp) &&
(++context->Length_High == 0) ? shaInputTooLong :
(context)->Corrupted)

/* Local Function Prototypes */ static int SHA384_512Reset(SHA512Context *context, uint64_t H0[SHA512HashSize/8]);

Eastlake & Hansen Informational [Page 57]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

static void SHA384_512ProcessMessageBlock(SHA512Context *context); static void SHA384_512Finalize(SHA512Context *context, uint8_t Pad_Byte); static void SHA384_512PadMessage(SHA512Context *context, uint8_t Pad_Byte); static int SHA384_512ResultN(SHA512Context *context, uint8_t Message_Digest[ ], int HashSize);

/* Initial Hash Values: FIPS 180-3 sections 5.3.4 and 5.3.5 */ static uint64_t SHA384_H0[ ] = { 0xCBBB9D5DC1059ED8ll, 0x629A292A367CD507ll, 0x9159015A3070DD17ll, 0x152FECD8F70E5939ll, 0x67332667FFC00B31ll, 0x8EB44A8768581511ll, 0xDB0C2E0D64F98FA7ll, 0x47B5481DBEFA4FA4ll }; static uint64_t SHA512_H0[ ] = { 0x6A09E667F3BCC908ll, 0xBB67AE8584CAA73Bll, 0x3C6EF372FE94F82Bll, 0xA54FF53A5F1D36F1ll, 0x510E527FADE682D1ll, 0x9B05688C2B3E6C1Fll, 0x1F83D9ABFB41BD6Bll, 0x5BE0CD19137E2179ll };

#endif /* USE_32BIT_ONLY */

/*

/*

Eastlake & Hansen Informational [Page 58]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

{ return SHA512FinalBits(context, message_bits, length); }

/*

Eastlake & Hansen Informational [Page 59]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

/*

Eastlake & Hansen Informational [Page 60]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

{ if (!context) return shaNull; if (!length) return shaSuccess; if (!message_array) return shaNull; if (context->Computed) return context->Corrupted = shaStateError; if (context->Corrupted) return context->Corrupted;

while (length--) { context->Message_Block[context->Message_Block_Index++] = *message_array;

if ((SHA384_512AddLength(context, 8) == shaSuccess) &&
  (context->Message_Block_Index == SHA512_Message_Block_Size))
  SHA384_512ProcessMessageBlock(context);

message_array++;

}

return context->Corrupted; }

/*

Eastlake & Hansen Informational [Page 61]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

{ static uint8_t masks[8] = { /* 0 0b00000000 / 0x00, / 1 0b10000000 / 0x80, / 2 0b11000000 / 0xC0, / 3 0b11100000 / 0xE0, / 4 0b11110000 / 0xF0, / 5 0b11111000 / 0xF8, / 6 0b11111100 / 0xFC, / 7 0b11111110 / 0xFE }; static uint8_t markbit[8] = { / 0 0b10000000 / 0x80, / 1 0b01000000 / 0x40, / 2 0b00100000 / 0x20, / 3 0b00010000 / 0x10, / 4 0b00001000 / 0x08, / 5 0b00000100 / 0x04, / 6 0b00000010 / 0x02, / 7 0b00000001 */ 0x01 };

if (!context) return shaNull; if (!length) return shaSuccess; if (context->Corrupted) return context->Corrupted; if (context->Computed) return context->Corrupted = shaStateError; if (length >= 8) return context->Corrupted = shaBadParam;

SHA384_512AddLength(context, length); SHA384_512Finalize(context, (uint8_t) ((message_bits & masks[length]) | markbit[length]));

return context->Corrupted; }

/*

Eastlake & Hansen Informational [Page 62]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

#ifdef USE_32BIT_ONLY static int SHA384_512Reset(SHA512Context context, uint32_t H0[SHA512HashSize/4]) #else / !USE_32BIT_ONLY */ static int SHA384_512Reset(SHA512Context context, uint64_t H0[SHA512HashSize/8]) #endif / USE_32BIT_ONLY */ { int i; if (!context) return shaNull;

Eastlake & Hansen Informational [Page 63]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

context->Message_Block_Index = 0;

#ifdef USE_32BIT_ONLY context->Length[0] = context->Length[1] = context->Length[2] = context->Length[3] = 0;

for (i = 0; i < SHA512HashSize/4; i++) context->Intermediate_Hash[i] = H0[i]; #else /* !USE_32BIT_ONLY */ context->Length_High = context->Length_Low = 0;

for (i = 0; i < SHA512HashSize/8; i++) context->Intermediate_Hash[i] = H0[i]; #endif /* USE_32BIT_ONLY */

context->Computed = 0; context->Corrupted = shaSuccess;

return shaSuccess; }

/*

#ifdef USE_32BIT_ONLY /* Constants defined in FIPS 180-3, section 4.2.3 / static const uint32_t K[802] = { 0x428A2F98, 0xD728AE22, 0x71374491, 0x23EF65CD, 0xB5C0FBCF,

Eastlake & Hansen Informational [Page 64]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

  0xEC4D3B2F, 0xE9B5DBA5, 0x8189DBBC, 0x3956C25B, 0xF348B538,
  0x59F111F1, 0xB605D019, 0x923F82A4, 0xAF194F9B, 0xAB1C5ED5,
  0xDA6D8118, 0xD807AA98, 0xA3030242, 0x12835B01, 0x45706FBE,
  0x243185BE, 0x4EE4B28C, 0x550C7DC3, 0xD5FFB4E2, 0x72BE5D74,
  0xF27B896F, 0x80DEB1FE, 0x3B1696B1, 0x9BDC06A7, 0x25C71235,
  0xC19BF174, 0xCF692694, 0xE49B69C1, 0x9EF14AD2, 0xEFBE4786,
  0x384F25E3, 0x0FC19DC6, 0x8B8CD5B5, 0x240CA1CC, 0x77AC9C65,
  0x2DE92C6F, 0x592B0275, 0x4A7484AA, 0x6EA6E483, 0x5CB0A9DC,
  0xBD41FBD4, 0x76F988DA, 0x831153B5, 0x983E5152, 0xEE66DFAB,
  0xA831C66D, 0x2DB43210, 0xB00327C8, 0x98FB213F, 0xBF597FC7,
  0xBEEF0EE4, 0xC6E00BF3, 0x3DA88FC2, 0xD5A79147, 0x930AA725,
  0x06CA6351, 0xE003826F, 0x14292967, 0x0A0E6E70, 0x27B70A85,
  0x46D22FFC, 0x2E1B2138, 0x5C26C926, 0x4D2C6DFC, 0x5AC42AED,
  0x53380D13, 0x9D95B3DF, 0x650A7354, 0x8BAF63DE, 0x766A0ABB,
  0x3C77B2A8, 0x81C2C92E, 0x47EDAEE6, 0x92722C85, 0x1482353B,
  0xA2BFE8A1, 0x4CF10364, 0xA81A664B, 0xBC423001, 0xC24B8B70,
  0xD0F89791, 0xC76C51A3, 0x0654BE30, 0xD192E819, 0xD6EF5218,
  0xD6990624, 0x5565A910, 0xF40E3585, 0x5771202A, 0x106AA070,
  0x32BBD1B8, 0x19A4C116, 0xB8D2D0C8, 0x1E376C08, 0x5141AB53,
  0x2748774C, 0xDF8EEB99, 0x34B0BCB5, 0xE19B48A8, 0x391C0CB3,
  0xC5C95A63, 0x4ED8AA4A, 0xE3418ACB, 0x5B9CCA4F, 0x7763E373,
  0x682E6FF3, 0xD6B2B8A3, 0x748F82EE, 0x5DEFB2FC, 0x78A5636F,
  0x43172F60, 0x84C87814, 0xA1F0AB72, 0x8CC70208, 0x1A6439EC,
  0x90BEFFFA, 0x23631E28, 0xA4506CEB, 0xDE82BDE9, 0xBEF9A3F7,
  0xB2C67915, 0xC67178F2, 0xE372532B, 0xCA273ECE, 0xEA26619C,
  0xD186B8C7, 0x21C0C207, 0xEADA7DD6, 0xCDE0EB1E, 0xF57D4F7F,
  0xEE6ED178, 0x06F067AA, 0x72176FBA, 0x0A637DC5, 0xA2C898A6,
  0x113F9804, 0xBEF90DAE, 0x1B710B35, 0x131C471B, 0x28DB77F5,
  0x23047D84, 0x32CAAB7B, 0x40C72493, 0x3C9EBE0A, 0x15C9BEBC,
  0x431D67C4, 0x9C100D4C, 0x4CC5D4BE, 0xCB3E42B6, 0x597F299C,
  0xFC657E2A, 0x5FCB6FAB, 0x3AD6FAEC, 0x6C44198C, 0x4A475817

}; int t, t2, t8; /* Loop counter / uint32_t temp1[2], temp2[2], / Temporary word values / temp3[2], temp4[2], temp5[2]; uint32_t W[280]; /* Word sequence / uint32_t A[2], B[2], C[2], D[2], / Word buffers */ E[2], F[2], G[2], H[2];

/* Initialize the first 16 words in the array W */ for (t = t2 = t8 = 0; t < 16; t++, t8 += 8) { W[t2++] = ((((uint32_t)context->Message_Block[t8 ])) << 24) | ((((uint32_t)context->Message_Block[t8 + 1])) << 16) | ((((uint32_t)context->Message_Block[t8 + 2])) << 8) | ((((uint32_t)context->Message_Block[t8 + 3]))); W[t2++] = ((((uint32_t)context->Message_Block[t8 + 4])) << 24) | ((((uint32_t)context->Message_Block[t8 + 5])) << 16) | ((((uint32_t)context->Message_Block[t8 + 6])) << 8) |

Eastlake & Hansen Informational [Page 65]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

          ((((uint32_t)context->Message_Block[t8 + 7])));

}

for (t = 16; t < 80; t++, t2 += 2) { /* W[t] = SHA512_sigma1(W[t-2]) + W[t-7] + SHA512_sigma0(W[t-15]) + W[t-16]; */ uint32_t Wt2 = &W[t2-22]; uint32_t Wt7 = &W[t2-72]; uint32_t Wt15 = &W[t2-152]; uint32_t Wt16 = &W[t2-162]; SHA512_sigma1(Wt2, temp1); SHA512_ADD(temp1, Wt7, temp2); SHA512_sigma0(Wt15, temp1); SHA512_ADD(temp1, Wt16, temp3); SHA512_ADD(temp2, temp3, &W[t2]); }

A[0] = context->Intermediate_Hash[0]; A[1] = context->Intermediate_Hash[1]; B[0] = context->Intermediate_Hash[2]; B[1] = context->Intermediate_Hash[3]; C[0] = context->Intermediate_Hash[4]; C[1] = context->Intermediate_Hash[5]; D[0] = context->Intermediate_Hash[6]; D[1] = context->Intermediate_Hash[7]; E[0] = context->Intermediate_Hash[8]; E[1] = context->Intermediate_Hash[9]; F[0] = context->Intermediate_Hash[10]; F[1] = context->Intermediate_Hash[11]; G[0] = context->Intermediate_Hash[12]; G[1] = context->Intermediate_Hash[13]; H[0] = context->Intermediate_Hash[14]; H[1] = context->Intermediate_Hash[15];

for (t = t2 = 0; t < 80; t++, t2 += 2) { /* * temp1 = H + SHA512_SIGMA1(E) + SHA_Ch(E,F,G) + K[t] + W[t]; / SHA512_SIGMA1(E,temp1); SHA512_ADD(H, temp1, temp2); SHA_Ch(E,F,G,temp3); SHA512_ADD(temp2, temp3, temp4); SHA512_ADD(&K[t2], &W[t2], temp5); SHA512_ADD(temp4, temp5, temp1); / * temp2 = SHA512_SIGMA0(A) + SHA_Maj(A,B,C); */ SHA512_SIGMA0(A,temp3);

Eastlake & Hansen Informational [Page 66]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

SHA_Maj(A,B,C,temp4);
SHA512_ADD(temp3, temp4, temp2);
H[0] = G[0]; H[1] = G[1];
G[0] = F[0]; G[1] = F[1];
F[0] = E[0]; F[1] = E[1];
SHA512_ADD(D, temp1, E);
D[0] = C[0]; D[1] = C[1];
C[0] = B[0]; C[1] = B[1];
B[0] = A[0]; B[1] = A[1];
SHA512_ADD(temp1, temp2, A);

}

SHA512_ADDTO2(&context->Intermediate_Hash[0], A); SHA512_ADDTO2(&context->Intermediate_Hash[2], B); SHA512_ADDTO2(&context->Intermediate_Hash[4], C); SHA512_ADDTO2(&context->Intermediate_Hash[6], D); SHA512_ADDTO2(&context->Intermediate_Hash[8], E); SHA512_ADDTO2(&context->Intermediate_Hash[10], F); SHA512_ADDTO2(&context->Intermediate_Hash[12], G); SHA512_ADDTO2(&context->Intermediate_Hash[14], H);

#else /* !USE_32BIT_ONLY / / Constants defined in FIPS 180-3, section 4.2.3 */ static const uint64_t K[80] = { 0x428A2F98D728AE22ll, 0x7137449123EF65CDll, 0xB5C0FBCFEC4D3B2Fll, 0xE9B5DBA58189DBBCll, 0x3956C25BF348B538ll, 0x59F111F1B605D019ll, 0x923F82A4AF194F9Bll, 0xAB1C5ED5DA6D8118ll, 0xD807AA98A3030242ll, 0x12835B0145706FBEll, 0x243185BE4EE4B28Cll, 0x550C7DC3D5FFB4E2ll, 0x72BE5D74F27B896Fll, 0x80DEB1FE3B1696B1ll, 0x9BDC06A725C71235ll, 0xC19BF174CF692694ll, 0xE49B69C19EF14AD2ll, 0xEFBE4786384F25E3ll, 0x0FC19DC68B8CD5B5ll, 0x240CA1CC77AC9C65ll, 0x2DE92C6F592B0275ll, 0x4A7484AA6EA6E483ll, 0x5CB0A9DCBD41FBD4ll, 0x76F988DA831153B5ll, 0x983E5152EE66DFABll, 0xA831C66D2DB43210ll, 0xB00327C898FB213Fll, 0xBF597FC7BEEF0EE4ll, 0xC6E00BF33DA88FC2ll, 0xD5A79147930AA725ll, 0x06CA6351E003826Fll, 0x142929670A0E6E70ll, 0x27B70A8546D22FFCll, 0x2E1B21385C26C926ll, 0x4D2C6DFC5AC42AEDll, 0x53380D139D95B3DFll, 0x650A73548BAF63DEll, 0x766A0ABB3C77B2A8ll, 0x81C2C92E47EDAEE6ll, 0x92722C851482353Bll, 0xA2BFE8A14CF10364ll, 0xA81A664BBC423001ll, 0xC24B8B70D0F89791ll, 0xC76C51A30654BE30ll, 0xD192E819D6EF5218ll, 0xD69906245565A910ll, 0xF40E35855771202All, 0x106AA07032BBD1B8ll, 0x19A4C116B8D2D0C8ll, 0x1E376C085141AB53ll, 0x2748774CDF8EEB99ll, 0x34B0BCB5E19B48A8ll, 0x391C0CB3C5C95A63ll, 0x4ED8AA4AE3418ACBll, 0x5B9CCA4F7763E373ll, 0x682E6FF3D6B2B8A3ll, 0x748F82EE5DEFB2FCll, 0x78A5636F43172F60ll, 0x84C87814A1F0AB72ll, 0x8CC702081A6439ECll, 0x90BEFFFA23631E28ll, 0xA4506CEBDE82BDE9ll, 0xBEF9A3F7B2C67915ll, 0xC67178F2E372532Bll, 0xCA273ECEEA26619Cll, 0xD186B8C721C0C207ll, 0xEADA7DD6CDE0EB1Ell, 0xF57D4F7FEE6ED178ll, 0x06F067AA72176FBAll, 0x0A637DC5A2C898A6ll, 0x113F9804BEF90DAEll, 0x1B710B35131C471Bll,

Eastlake & Hansen Informational [Page 67]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

  0x28DB77F523047D84ll, 0x32CAAB7B40C72493ll, 0x3C9EBE0A15C9BEBCll,
  0x431D67C49C100D4Cll, 0x4CC5D4BECB3E42B6ll, 0x597F299CFC657E2All,
  0x5FCB6FAB3AD6FAECll, 0x6C44198C4A475817ll

}; int t, t8; /* Loop counter / uint64_t temp1, temp2; / Temporary word value / uint64_t W[80]; / Word sequence / uint64_t A, B, C, D, E, F, G, H; / Word buffers */

/*

for (t = 16; t < 80; t++) W[t] = SHA512_sigma1(W[t-2]) + W[t-7] + SHA512_sigma0(W[t-15]) + W[t-16]; A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4]; F = context->Intermediate_Hash[5]; G = context->Intermediate_Hash[6]; H = context->Intermediate_Hash[7];

for (t = 0; t < 80; t++) { temp1 = H + SHA512_SIGMA1(E) + SHA_Ch(E,F,G) + K[t] + W[t]; temp2 = SHA512_SIGMA0(A) + SHA_Maj(A,B,C); H = G; G = F; F = E; E = D + temp1; D = C; C = B; B = A; A = temp1 + temp2; }

context->Intermediate_Hash[0] += A;

Eastlake & Hansen Informational [Page 68]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Intermediate_Hash[5] += F; context->Intermediate_Hash[6] += G; context->Intermediate_Hash[7] += H; #endif /* USE_32BIT_ONLY */

context->Message_Block_Index = 0; }

/*

#ifdef USE_32BIT_ONLY /* and clear length / context->Length[0] = context->Length[1] = 0; context->Length[2] = context->Length[3] = 0; #else / !USE_32BIT_ONLY / context->Length_High = context->Length_Low = 0; #endif / USE_32BIT_ONLY */ context->Computed = 1; }

Eastlake & Hansen Informational [Page 69]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

Eastlake & Hansen Informational [Page 70]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

*/ #ifdef USE_32BIT_ONLY context->Message_Block[112] = (uint8_t)(context->Length[0] >> 24); context->Message_Block[113] = (uint8_t)(context->Length[0] >> 16); context->Message_Block[114] = (uint8_t)(context->Length[0] >> 8); context->Message_Block[115] = (uint8_t)(context->Length[0]); context->Message_Block[116] = (uint8_t)(context->Length[1] >> 24); context->Message_Block[117] = (uint8_t)(context->Length[1] >> 16); context->Message_Block[118] = (uint8_t)(context->Length[1] >> 8); context->Message_Block[119] = (uint8_t)(context->Length[1]);

context->Message_Block[120] = (uint8_t)(context->Length[2] >> 24); context->Message_Block[121] = (uint8_t)(context->Length[2] >> 16); context->Message_Block[122] = (uint8_t)(context->Length[2] >> 8); context->Message_Block[123] = (uint8_t)(context->Length[2]); context->Message_Block[124] = (uint8_t)(context->Length[3] >> 24); context->Message_Block[125] = (uint8_t)(context->Length[3] >> 16); context->Message_Block[126] = (uint8_t)(context->Length[3] >> 8); context->Message_Block[127] = (uint8_t)(context->Length[3]); #else /* !USE_32BIT_ONLY */ context->Message_Block[112] = (uint8_t)(context->Length_High >> 56); context->Message_Block[113] = (uint8_t)(context->Length_High >> 48); context->Message_Block[114] = (uint8_t)(context->Length_High >> 40); context->Message_Block[115] = (uint8_t)(context->Length_High >> 32); context->Message_Block[116] = (uint8_t)(context->Length_High >> 24); context->Message_Block[117] = (uint8_t)(context->Length_High >> 16); context->Message_Block[118] = (uint8_t)(context->Length_High >> 8); context->Message_Block[119] = (uint8_t)(context->Length_High);

context->Message_Block[120] = (uint8_t)(context->Length_Low >> 56); context->Message_Block[121] = (uint8_t)(context->Length_Low >> 48); context->Message_Block[122] = (uint8_t)(context->Length_Low >> 40); context->Message_Block[123] = (uint8_t)(context->Length_Low >> 32); context->Message_Block[124] = (uint8_t)(context->Length_Low >> 24); context->Message_Block[125] = (uint8_t)(context->Length_Low >> 16); context->Message_Block[126] = (uint8_t)(context->Length_Low >> 8); context->Message_Block[127] = (uint8_t)(context->Length_Low); #endif /* USE_32BIT_ONLY */

SHA384_512ProcessMessageBlock(context); }

/*

Eastlake & Hansen Informational [Page 71]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

#ifdef USE_32BIT_ONLY int i2; #endif /* USE_32BIT_ONLY */

if (!context) return shaNull; if (!Message_Digest) return shaNull; if (context->Corrupted) return context->Corrupted;

if (!context->Computed) SHA384_512Finalize(context, 0x80);

#ifdef USE_32BIT_ONLY for (i = i2 = 0; i < HashSize; ) { Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>24); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>16); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>8); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2++]); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>24); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>16); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>8); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2++]); } #else /* !USE_32BIT_ONLY / for (i = 0; i < HashSize; ++i) Message_Digest[i] = (uint8_t) (context->Intermediate_Hash[i>>3] >> 8 * ( 7 - ( i % 8 ) )); #endif / USE_32BIT_ONLY */

Eastlake & Hansen Informational [Page 72]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

return shaSuccess; }

8.2.4. usha.c

/**************************** usha.c ***************************/ /***************** See RFC 6234 for details. *******************/ /* Copyright (c) 2011 IETF Trust and the persons identified as / / authors of the code. All rights reserved. / / See sha.h for terms of use and redistribution. */

/*

*/

#include "sha.h"

/*

Eastlake & Hansen Informational [Page 73]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

{ if (!context) return shaNull; switch (context->whichSha) { case SHA1: return SHA1Input((SHA1Context*)&context->ctx, bytes, bytecount); case SHA224: return SHA224Input((SHA224Context*)&context->ctx, bytes, bytecount); case SHA256: return SHA256Input((SHA256Context*)&context->ctx, bytes, bytecount); case SHA384: return SHA384Input((SHA384Context*)&context->ctx, bytes, bytecount); case SHA512: return SHA512Input((SHA512Context*)&context->ctx, bytes, bytecount); default: return shaBadParam; } }

Eastlake & Hansen Informational [Page 74]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

{ if (!context) return shaNull; switch (context->whichSha) { case SHA1: return SHA1FinalBits((SHA1Context*)&context->ctx, bits, bit_count); case SHA224: return SHA224FinalBits((SHA224Context*)&context->ctx, bits, bit_count); case SHA256: return SHA256FinalBits((SHA256Context*)&context->ctx, bits, bit_count); case SHA384: return SHA384FinalBits((SHA384Context*)&context->ctx, bits, bit_count); case SHA512: return SHA512FinalBits((SHA512Context*)&context->ctx, bits, bit_count); default: return shaBadParam; } }

Eastlake & Hansen Informational [Page 75]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

{ if (!context) return shaNull; switch (context->whichSha) { case SHA1: return SHA1Result((SHA1Context*)&context->ctx, Message_Digest); case SHA224: return SHA224Result((SHA224Context*)&context->ctx, Message_Digest); case SHA256: return SHA256Result((SHA256Context*)&context->ctx, Message_Digest); case SHA384: return SHA384Result((SHA384Context*)&context->ctx, Message_Digest); case SHA512: return SHA512Result((SHA512Context*)&context->ctx, Message_Digest); default: return shaBadParam; } }

/*

Eastlake & Hansen Informational [Page 76]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

Eastlake & Hansen Informational [Page 77]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

/*

Eastlake & Hansen Informational [Page 78]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

case SHA384: return "SHA384";
default:
case SHA512: return "SHA512";

} }

8.3. The HMAC Code

/**************************** hmac.c ***************************/ /***************** See RFC 6234 for details. *******************/ /* Copyright (c) 2011 IETF Trust and the persons identified as / / authors of the code. All rights reserved. / / See sha.h for terms of use and redistribution. */

/*

*/

#include "sha.h"

/*

Eastlake & Hansen Informational [Page 79]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

int hmac(SHAversion whichSha, const unsigned char *message_array, int length, const unsigned char *key, int key_len, uint8_t digest[USHAMaxHashSize]) { HMACContext context; return hmacReset(&context, whichSha, key, key_len) || hmacInput(&context, message_array, length) || hmacResult(&context, digest); }

/*

Eastlake & Hansen Informational [Page 80]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

if (!context) return shaNull; context->Computed = 0; context->Corrupted = shaSuccess;

blocksize = context->blockSize = USHABlockSize(whichSha); hashsize = context->hashSize = USHAHashSize(whichSha); context->whichSha = whichSha;

/*

if (err != shaSuccess) return err;

key = tempkey;
key_len = hashsize;

}

/*

/* store key into the pads, XOR'd with ipad and opad values / for (i = 0; i < key_len; i++) { k_ipad[i] = key[i] ^ 0x36; context->k_opad[i] = key[i] ^ 0x5c; } / remaining pad bytes are '\0' XOR'd with ipad and opad values */ for ( ; i < blocksize; i++) { k_ipad[i] = 0x36; context->k_opad[i] = 0x5c; }

/* perform inner hash / / init context for 1st pass */ ret = USHAReset(&context->shaContext, whichSha) ||

Eastlake & Hansen Informational [Page 81]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

    /* and start with inner pad */
    USHAInput(&context->shaContext, k_ipad, blocksize);

return context->Corrupted = ret; }

/*

/*

Eastlake & Hansen Informational [Page 82]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

Eastlake & Hansen Informational [Page 83]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

     /* perform outer SHA */
     /* init context for 2nd pass */
     USHAReset(&context->shaContext, context->whichSha) ||

     /* start with outer pad */
     USHAInput(&context->shaContext, context->k_opad,
               context->blockSize) ||

     /* then results of 1st hash */
     USHAInput(&context->shaContext, digest, context->hashSize) ||
     /* finish up 2nd pass */
     USHAResult(&context->shaContext, digest);

context->Computed = 1; return context->Corrupted = ret; }

8.4. The HKDF Code

/**************************** hkdf.c ***************************/ /***************** See RFC 6234 for details. *******************/ /* Copyright (c) 2011 IETF Trust and the persons identified as / / authors of the code. All rights reserved. / / See sha.h for terms of use and redistribution. */

/*

*/

#include "sha.h" #include <string.h> #include <stdlib.h>

/*

Eastlake & Hansen Informational [Page 84]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

}

/*

Eastlake & Hansen Informational [Page 85]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/*

Eastlake & Hansen Informational [Page 86]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

Eastlake & Hansen Informational [Page 87]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

          hmacInput(&context, info, info_len) ||
          hmacInput(&context, &c, 1) ||
          hmacResult(&context, T);
if (ret != shaSuccess) return ret;
memcpy(okm + where, T,
       (i != N) ? hash_len : (okm_len - where));
where += hash_len;
Tlen = hash_len;

} return shaSuccess; }

/*

{ unsigned char nullSalt[USHAMaxHashSize]; if (!context) return shaNull;

context->whichSha = whichSha; context->hashSize = USHAHashSize(whichSha); if (salt == 0) { salt = nullSalt; salt_len = context->hashSize; memset(nullSalt, '\0', salt_len);

Eastlake & Hansen Informational [Page 88]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

}

return hmacReset(&context->hmacContext, whichSha, salt, salt_len); }

/*

{ if (!context) return shaNull; if (context->Corrupted) return context->Corrupted; if (context->Computed) return context->Corrupted = shaStateError; return hmacInput(&context->hmacContext, ikm, ikm_len); }

/*

Eastlake & Hansen Informational [Page 89]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

{ if (!context) return shaNull; if (context->Corrupted) return context->Corrupted; if (context->Computed) return context->Corrupted = shaStateError; return hmacFinalBits(&context->hmacContext, ikm_bits, ikm_bit_count); }

/*

Eastlake & Hansen Informational [Page 90]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

           uint8_t okm[ ], int okm_len)

{ uint8_t prkbuf[USHAMaxHashSize]; int ret;

if (!context) return shaNull; if (context->Corrupted) return context->Corrupted; if (context->Computed) return context->Corrupted = shaStateError; if (!okm) return context->Corrupted = shaBadParam; if (!prk) prk = prkbuf;

ret = hmacResult(&context->hmacContext, prk) || hkdfExpand(context->whichSha, prk, context->hashSize, info, info_len, okm, okm_len); context->Computed = 1; return context->Corrupted = ret; }

8.5. The Test Driver

The following code is a main program test driver to exercise the code in sha1.c, sha224-256.c, sha384-512.c, hmac.c, and hkdf.c. The test driver can also be used as a standalone program for generating the hashes. Note that the tests assume that character values are as in [[US-ASCII](#ref-US-ASCII ""USA Standard Code for Information Interchange"")] and a run time check warns if the code appears to have been compiled with some other character system.

See also [[SHAVS](#ref-SHAVS ""The Secure Hash Algorithm Validation System (SHAVS)"")].

/************************** shatest.c **************************/ /***************** See RFC 6234 for details. *******************/ /* Copyright (c) 2011 IETF Trust and the persons identified as / / authors of the code. All rights reserved. / / See sha.h for terms of use and redistribution. */

/*

Eastlake & Hansen Informational [Page 91]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

#include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <ctype.h> #include <unistd.h> /* defines getopt() and optarg */ #include "sha.h"

static int scasecmp(const char *s1, const char *s2);

/*

#define TEST1 "abc" #define TEST2_1
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" #define TEST2_2a
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" #define TEST2_2b
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu" #define TEST2_2 TEST2_2a TEST2_2b #define TEST3 "a" /* times 1000000 / #define TEST4a "01234567012345670123456701234567" #define TEST4b "01234567012345670123456701234567" / an exact multiple of 512 bits / #define TEST4 TEST4a TEST4b / times 10 */

Eastlake & Hansen Informational [Page 92]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

#define TEST7_1
"\x49\xb2\xae\xc2\x59\x4b\xbe\x3a\x3b\x11\x75\x42\xd9\x4a\xc8" #define TEST8_1
"\x9a\x7d\xfd\xf1\xec\xea\xd0\x6e\xd6\x46\xaa\x55\xfe\x75\x71\x46" #define TEST9_1
"\x65\xf9\x32\x99\x5b\xa4\xce\x2c\xb1\xb4\xa2\xe7\x1a\xe7\x02\x20"
"\xaa\xce\xc8\x96\x2d\xd4\x49\x9c\xbd\x7c\x88\x7a\x94\xea\xaa\x10"
"\x1e\xa5\xaa\xbc\x52\x9b\x4e\x7e\x43\x66\x5a\x5a\xf2\xcd\x03\xfe"
"\x67\x8e\xa6\xa5\x00\x5b\xba\x3b\x08\x22\x04\xc2\x8b\x91\x09\xf4"
"\x69\xda\xc9\x2a\xaa\xb3\xaa\x7c\x11\xa1\xb3\x2a" #define TEST10_1
"\xf7\x8f\x92\x14\x1b\xcd\x17\x0a\xe8\x9b\x4f\xba\x15\xa1\xd5\x9f"
"\x3f\xd8\x4d\x22\x3c\x92\x51\xbd\xac\xbb\xae\x61\xd0\x5e\xd1\x15"
"\xa0\x6a\x7c\xe1\x17\xb7\xbe\xea\xd2\x44\x21\xde\xd9\xc3\x25\x92"
"\xbd\x57\xed\xea\xe3\x9c\x39\xfa\x1f\xe8\x94\x6a\x84\xd0\xcf\x1f"
"\x7b\xee\xad\x17\x13\xe2\xe0\x95\x98\x97\x34\x7f\x67\xc8\x0b\x04"
"\x00\xc2\x09\x81\x5d\x6b\x10\xa6\x83\x83\x6f\xd5\x56\x2a\x56\xca"
"\xb1\xa2\x8e\x81\xb6\x57\x66\x54\x63\x1c\xf1\x65\x66\xb8\x6e\x3b"
"\x33\xa1\x08\xb0\x53\x07\xc0\x0a\xff\x14\xa7\x68\xed\x73\x50\x60"
"\x6a\x0f\x85\xe6\xa9\x1d\x39\x6f\x5b\x5c\xbe\x57\x7f\x9b\x38\x80"
"\x7c\x7d\x52\x3d\x6d\x79\x2f\x6e\xbc\x24\xa4\xec\xf2\xb3\xa4\x27"
"\xcd\xbb\xfb" #define TEST7_224
"\xf0\x70\x06\xf2\x5a\x0b\xea\x68\xcd\x76\xa2\x95\x87\xc2\x8d" #define TEST8_224
"\x18\x80\x40\x05\xdd\x4f\xbd\x15\x56\x29\x9d\x6f\x9d\x93\xdf\x62" #define TEST9_224
"\xa2\xbe\x6e\x46\x32\x81\x09\x02\x94\xd9\xce\x94\x82\x65\x69\x42"
"\x3a\x3a\x30\x5e\xd5\xe2\x11\x6c\xd4\xa4\xc9\x87\xfc\x06\x57\x00"
"\x64\x91\xb1\x49\xcc\xd4\xb5\x11\x30\xac\x62\xb1\x9d\xc2\x48\xc7"
"\x44\x54\x3d\x20\xcd\x39\x52\xdc\xed\x1f\x06\xcc\x3b\x18\xb9\x1f"
"\x3f\x55\x63\x3e\xcc\x30\x85\xf4\x90\x70\x60\xd2" #define TEST10_224
"\x55\xb2\x10\x07\x9c\x61\xb5\x3a\xdd\x52\x06\x22\xd1\xac\x97\xd5"
"\xcd\xbe\x8c\xb3\x3a\xa0\xae\x34\x45\x17\xbe\xe4\xd7\xba\x09\xab"
"\xc8\x53\x3c\x52\x50\x88\x7a\x43\xbe\xbb\xac\x90\x6c\x2e\x18\x37"
"\xf2\x6b\x36\xa5\x9a\xe3\xbe\x78\x14\xd5\x06\x89\x6b\x71\x8b\x2a"
"\x38\x3e\xcd\xac\x16\xb9\x61\x25\x55\x3f\x41\x6f\xf3\x2c\x66\x74"
"\xc7\x45\x99\xa9\x00\x53\x86\xd9\xce\x11\x12\x24\x5f\x48\xee\x47"
"\x0d\x39\x6c\x1e\xd6\x3b\x92\x67\x0c\xa5\x6e\xc8\x4d\xee\xa8\x14"
"\xb6\x13\x5e\xca\x54\x39\x2b\xde\xdb\x94\x89\xbc\x9b\x87\x5a\x8b"
"\xaf\x0d\xc1\xae\x78\x57\x36\x91\x4a\xb7\xda\xa2\x64\xbc\x07\x9d"
"\x26\x9f\x2c\x0d\x7e\xdd\xd8\x10\xa4\x26\x14\x5a\x07\x76\xf6\x7c"
"\x87\x82\x73" #define TEST7_256
"\xbe\x27\x46\xc6\xdb\x52\x76\x5f\xdb\x2f\x88\x70\x0f\x9a\x73" #define TEST8_256
"\xe3\xd7\x25\x70\xdc\xdd\x78\x7c\xe3\x88\x7a\xb2\xcd\x68\x46\x52"

Eastlake & Hansen Informational [Page 93]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

#define TEST9_256
"\x3e\x74\x03\x71\xc8\x10\xc2\xb9\x9f\xc0\x4e\x80\x49\x07\xef\x7c"
"\xf2\x6b\xe2\x8b\x57\xcb\x58\xa3\xe2\xf3\xc0\x07\x16\x6e\x49\xc1"
"\x2e\x9b\xa3\x4c\x01\x04\x06\x91\x29\xea\x76\x15\x64\x25\x45\x70"
"\x3a\x2b\xd9\x01\xe1\x6e\xb0\xe0\x5d\xeb\xa0\x14\xeb\xff\x64\x06"
"\xa0\x7d\x54\x36\x4e\xff\x74\x2d\xa7\x79\xb0\xb3" #define TEST10_256
"\x83\x26\x75\x4e\x22\x77\x37\x2f\x4f\xc1\x2b\x20\x52\x7a\xfe\xf0"
"\x4d\x8a\x05\x69\x71\xb1\x1a\xd5\x71\x23\xa7\xc1\x37\x76\x00\x00"
"\xd7\xbe\xf6\xf3\xc1\xf7\xa9\x08\x3a\xa3\x9d\x81\x0d\xb3\x10\x77"
"\x7d\xab\x8b\x1e\x7f\x02\xb8\x4a\x26\xc7\x73\x32\x5f\x8b\x23\x74"
"\xde\x7a\x4b\x5a\x58\xcb\x5c\x5c\xf3\x5b\xce\xe6\xfb\x94\x6e\x5b"
"\xd6\x94\xfa\x59\x3a\x8b\xeb\x3f\x9d\x65\x92\xec\xed\xaa\x66\xca"
"\x82\xa2\x9d\x0c\x51\xbc\xf9\x33\x62\x30\xe5\xd7\x84\xe4\xc0\xa4"
"\x3f\x8d\x79\xa3\x0a\x16\x5c\xba\xbe\x45\x2b\x77\x4b\x9c\x71\x09"
"\xa9\x7d\x13\x8f\x12\x92\x28\x96\x6f\x6c\x0a\xdc\x10\x6a\xad\x5a"
"\x9f\xdd\x30\x82\x57\x69\xb2\xc6\x71\xaf\x67\x59\xdf\x28\xeb\x39"
"\x3d\x54\xd6" #define TEST7_384
"\x8b\xc5\x00\xc7\x7c\xee\xd9\x87\x9d\xa9\x89\x10\x7c\xe0\xaa" #define TEST8_384
"\xa4\x1c\x49\x77\x79\xc0\x37\x5f\xf1\x0a\x7f\x4e\x08\x59\x17\x39" #define TEST9_384
"\x68\xf5\x01\x79\x2d\xea\x97\x96\x76\x70\x22\xd9\x3d\xa7\x16\x79"
"\x30\x99\x20\xfa\x10\x12\xae\xa3\x57\xb2\xb1\x33\x1d\x40\xa1\xd0"
"\x3c\x41\xc2\x40\xb3\xc9\xa7\x5b\x48\x92\xf4\xc0\x72\x4b\x68\xc8"
"\x75\x32\x1a\xb8\xcf\xe5\x02\x3b\xd3\x75\xbc\x0f\x94\xbd\x89\xfe"
"\x04\xf2\x97\x10\x5d\x7b\x82\xff\xc0\x02\x1a\xeb\x1c\xcb\x67\x4f"
"\x52\x44\xea\x34\x97\xde\x26\xa4\x19\x1c\x5f\x62\xe5\xe9\xa2\xd8"
"\x08\x2f\x05\x51\xf4\xa5\x30\x68\x26\xe9\x1c\xc0\x06\xce\x1b\xf6"
"\x0f\xf7\x19\xd4\x2f\xa5\x21\xc8\x71\xcd\x23\x94\xd9\x6e\xf4\x46"
"\x8f\x21\x96\x6b\x41\xf2\xba\x80\xc2\x6e\x83\xa9" #define TEST10_384
"\x39\x96\x69\xe2\x8f\x6b\x9c\x6d\xbc\xbb\x69\x12\xec\x10\xff\xcf"
"\x74\x79\x03\x49\xb7\xdc\x8f\xbe\x4a\x8e\x7b\x3b\x56\x21\xdb\x0f"
"\x3e\x7d\xc8\x7f\x82\x32\x64\xbb\xe4\x0d\x18\x11\xc9\xea\x20\x61"
"\xe1\xc8\x4a\xd1\x0a\x23\xfa\xc1\x72\x7e\x72\x02\xfc\x3f\x50\x42"
"\xe6\xbf\x58\xcb\xa8\xa2\x74\x6e\x1f\x64\xf9\xb9\xea\x35\x2c\x71"
"\x15\x07\x05\x3c\xf4\xe5\x33\x9d\x52\x86\x5f\x25\xcc\x22\xb5\xe8"
"\x77\x84\xa1\x2f\xc9\x61\xd6\x6c\xb6\xe8\x95\x73\x19\x9a\x2c\xe6"
"\x56\x5c\xbd\xf1\x3d\xca\x40\x38\x32\xcf\xcb\x0e\x8b\x72\x11\xe8"
"\x3a\xf3\x2a\x11\xac\x17\x92\x9f\xf1\xc0\x73\xa5\x1c\xc0\x27\xaa"
"\xed\xef\xf8\x5a\xad\x7c\x2b\x7c\x5a\x80\x3e\x24\x04\xd9\x6d\x2a"
"\x77\x35\x7b\xda\x1a\x6d\xae\xed\x17\x15\x1c\xb9\xbc\x51\x25\xa4"
"\x22\xe9\x41\xde\x0c\xa0\xfc\x50\x11\xc2\x3e\xcf\xfe\xfd\xd0\x96"
"\x76\x71\x1c\xf3\xdb\x0a\x34\x40\x72\x0e\x16\x15\xc1\xf2\x2f\xbc"
"\x3c\x72\x1d\xe5\x21\xe1\xb9\x9b\xa1\xbd\x55\x77\x40\x86\x42\x14"
"\x7e\xd0\x96"

Eastlake & Hansen Informational [Page 94]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

#define TEST7_512
"\x08\xec\xb5\x2e\xba\xe1\xf7\x42\x2d\xb6\x2b\xcd\x54\x26\x70" #define TEST8_512
"\x8d\x4e\x3c\x0e\x38\x89\x19\x14\x91\x81\x6e\x9d\x98\xbf\xf0\xa0" #define TEST9_512
"\x3a\xdd\xec\x85\x59\x32\x16\xd1\x61\x9a\xa0\x2d\x97\x56\x97\x0b"
"\xfc\x70\xac\xe2\x74\x4f\x7c\x6b\x27\x88\x15\x10\x28\xf7\xb6\xa2"
"\x55\x0f\xd7\x4a\x7e\x6e\x69\xc2\xc9\xb4\x5f\xc4\x54\x96\x6d\xc3"
"\x1d\x2e\x10\xda\x1f\x95\xce\x02\xbe\xb4\xbf\x87\x65\x57\x4c\xbd"
"\x6e\x83\x37\xef\x42\x0a\xdc\x98\xc1\x5c\xb6\xd5\xe4\xa0\x24\x1b"
"\xa0\x04\x6d\x25\x0e\x51\x02\x31\xca\xc2\x04\x6c\x99\x16\x06\xab"
"\x4e\xe4\x14\x5b\xee\x2f\xf4\xbb\x12\x3a\xab\x49\x8d\x9d\x44\x79"
"\x4f\x99\xcc\xad\x89\xa9\xa1\x62\x12\x59\xed\xa7\x0a\x5b\x6d\xd4"
"\xbd\xd8\x77\x78\xc9\x04\x3b\x93\x84\xf5\x49\x06" #define TEST10_512
"\xa5\x5f\x20\xc4\x11\xaa\xd1\x32\x80\x7a\x50\x2d\x65\x82\x4e\x31"
"\xa2\x30\x54\x32\xaa\x3d\x06\xd3\xe2\x82\xa8\xd8\x4e\x0d\xe1\xde"
"\x69\x74\xbf\x49\x54\x69\xfc\x7f\x33\x8f\x80\x54\xd5\x8c\x26\xc4"
"\x93\x60\xc3\xe8\x7a\xf5\x65\x23\xac\xf6\xd8\x9d\x03\xe5\x6f\xf2"
"\xf8\x68\x00\x2b\xc3\xe4\x31\xed\xc4\x4d\xf2\xf0\x22\x3d\x4b\xb3"
"\xb2\x43\x58\x6e\x1a\x7d\x92\x49\x36\x69\x4f\xcb\xba\xf8\x8d\x95"
"\x19\xe4\xeb\x50\xa6\x44\xf8\xe4\xf9\x5e\xb0\xea\x95\xbc\x44\x65"
"\xc8\x82\x1a\xac\xd2\xfe\x15\xab\x49\x81\x16\x4b\xbb\x6d\xc3\x2f"
"\x96\x90\x87\xa1\x45\xb0\xd9\xcc\x9c\x67\xc2\x2b\x76\x32\x99\x41"
"\x9c\xc4\x12\x8b\xe9\xa0\x77\xb3\xac\xe6\x34\x06\x4e\x6d\x99\x28"
"\x35\x13\xdc\x06\xe7\x51\x5d\x0d\x73\x13\x2e\x9a\x0d\xc6\xd3\xb1"
"\xf8\xb2\x46\xf1\xa9\x8a\x3f\xc7\x29\x41\xb1\xe3\xbb\x20\x98\xe8"
"\xbf\x16\xf2\x68\xd6\x4f\x0b\x0f\x47\x07\xfe\x1e\xa1\xa1\x79\x1b"
"\xa2\xf3\xc0\xc7\x58\xe5\xf5\x51\x86\x3a\x96\xc9\x49\xad\x47\xd7"
"\xfb\x40\xd2" #define SHA1_SEED "\xd0\x56\x9c\xb3\x66\x5a\x8a\x43\xeb\x6e\xa2\x3d"
"\x75\xa3\xc4\xd2\x05\x4a\x0d\x7d" #define SHA224_SEED "\xd0\x56\x9c\xb3\x66\x5a\x8a\x43\xeb\x6e\xa2"
"\x3d\x75\xa3\xc4\xd2\x05\x4a\x0d\x7d\x66\xa9\xca\x99\xc9\xce\xb0"
"\x27" #define SHA256_SEED "\xf4\x1e\xce\x26\x13\xe4\x57\x39\x15\x69\x6b"
"\x5a\xdc\xd5\x1c\xa3\x28\xbe\x3b\xf5\x66\xa9\xca\x99\xc9\xce\xb0"
"\x27\x9c\x1c\xb0\xa7" #define SHA384_SEED "\x82\x40\xbc\x51\xe4\xec\x7e\xf7\x6d\x18\xe3"
"\x52\x04\xa1\x9f\x51\xa5\x21\x3a\x73\xa8\x1d\x6f\x94\x46\x80\xd3"
"\x07\x59\x48\xb7\xe4\x63\x80\x4e\xa3\xd2\x6e\x13\xea\x82\x0d\x65"
"\xa4\x84\xbe\x74\x53" #define SHA512_SEED "\x47\x3f\xf1\xb9\xb3\xff\xdf\xa1\x26\x69\x9a"
"\xc7\xef\x9e\x8e\x78\x77\x73\x09\x58\x24\xc6\x42\x55\x7c\x13\x99"
"\xd9\x8e\x42\x20\x44\x8d\xc3\x5b\x99\xbf\xdd\x44\x77\x95\x43\x92"
"\x4c\x1c\xe9\x3b\xc5\x94\x15\x38\x89\x5d\xb9\x88\x26\x1b\x00\x77"
"\x4b\x12\x27\x20\x39"

Eastlake & Hansen Informational [Page 95]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

#define TESTCOUNT 10 #define HASHCOUNT 5 #define RANDOMCOUNT 4 #define HMACTESTCOUNT 7 #define HKDFTESTCOUNT 7

#define PRINTNONE 0 #define PRINTTEXT 1 #define PRINTRAW 2 #define PRINTHEX 3 #define PRINTBASE64 4

#define PRINTPASSFAIL 1 #define PRINTFAIL 2

#define length(x) (sizeof(x)-1)

/* Test arrays for hashes. */ struct hash { const char *name; SHAversion whichSha; int hashsize; struct { const char *testarray; int length; long repeatcount; int extrabits; int numberExtrabits; const char *resultarray; } tests[TESTCOUNT]; const char *randomtest; const char randomresults[RANDOMCOUNT]; } hashes[HASHCOUNT] = { { "SHA1", SHA1, SHA1HashSize, { / 1 / { TEST1, length(TEST1), 1, 0, 0, "A9993E364706816ABA3E25717850C26C9CD0D89D" }, / 2 / { TEST2_1, length(TEST2_1), 1, 0, 0, "84983E441C3BD26EBAAE4AA1F95129E5E54670F1" }, / 3 / { TEST3, length(TEST3), 1000000, 0, 0, "34AA973CD4C4DAA4F61EEB2BDBAD27316534016F" }, / 4 / { TEST4, length(TEST4), 10, 0, 0, "DEA356A2CDDD90C7A7ECEDC5EBB563934F460452" }, / 5 / { "", 0, 0, 0x98, 5, "29826B003B906E660EFF4027CE98AF3531AC75BA" }, / 6 / { "\x5e", 1, 1, 0, 0, "5E6F80A34A9798CAFC6A5DB96CC57BA4C4DB59C2" }, / 7 */ { TEST7_1, length(TEST7_1), 1, 0x80, 3,

Eastlake & Hansen Informational [Page 96]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

    "6239781E03729919C01955B3FFA8ACB60B988340" },
  /* 8 */ { TEST8_1, length(TEST8_1), 1, 0, 0,
    "82ABFF6605DBE1C17DEF12A394FA22A82B544A35" },
  /* 9 */ { TEST9_1, length(TEST9_1), 1, 0xE0, 3,
    "8C5B2A5DDAE5A97FC7F9D85661C672ADBF7933D4" },
  /* 10 */ { TEST10_1, length(TEST10_1), 1, 0, 0,
    "CB0082C8F197D260991BA6A460E76E202BAD27B3" }
}, SHA1_SEED, { "E216836819477C7F78E0D843FE4FF1B6D6C14CD4",
    "A2DBC7A5B1C6C0A8BCB7AAA41252A6A7D0690DBC",
    "DB1F9050BB863DFEF4CE37186044E2EEB17EE013",
    "127FDEDF43D372A51D5747C48FBFFE38EF6CDF7B"
 } },

{ "SHA224", SHA224, SHA224HashSize, { /* 1 / { TEST1, length(TEST1), 1, 0, 0, "23097D223405D8228642A477BDA255B32AADBCE4BDA0B3F7E36C9DA7" }, / 2 / { TEST2_1, length(TEST2_1), 1, 0, 0, "75388B16512776CC5DBA5DA1FD890150B0C6455CB4F58B1952522525" }, / 3 / { TEST3, length(TEST3), 1000000, 0, 0, "20794655980C91D8BBB4C1EA97618A4BF03F42581948B2EE4EE7AD67" }, / 4 / { TEST4, length(TEST4), 10, 0, 0, "567F69F168CD7844E65259CE658FE7AADFA25216E68ECA0EB7AB8262" }, / 5 / { "", 0, 0, 0x68, 5, "E3B048552C3C387BCAB37F6EB06BB79B96A4AEE5FF27F51531A9551C" }, / 6 / { "\x07", 1, 1, 0, 0, "00ECD5F138422B8AD74C9799FD826C531BAD2FCABC7450BEE2AA8C2A" }, / 7 / { TEST7_224, length(TEST7_224), 1, 0xA0, 3, "1B01DB6CB4A9E43DED1516BEB3DB0B87B6D1EA43187462C608137150" }, / 8 / { TEST8_224, length(TEST8_224), 1, 0, 0, "DF90D78AA78821C99B40BA4C966921ACCD8FFB1E98AC388E56191DB1" }, / 9 / { TEST9_224, length(TEST9_224), 1, 0xE0, 3, "54BEA6EAB8195A2EB0A7906A4B4A876666300EEFBD1F3B8474F9CD57" }, / 10 / { TEST10_224, length(TEST10_224), 1, 0, 0, "0B31894EC8937AD9B91BDFBCBA294D9ADEFAA18E09305E9F20D5C3A4" } }, SHA224_SEED, { "100966A5B4FDE0B42E2A6C5953D4D7F41BA7CF79FD" "2DF431416734BE", "1DCA396B0C417715DEFAAE9641E10A2E99D55A" "BCB8A00061EB3BE8BD", "1864E627BDB2319973CD5ED7D68DA71D8B" "F0F983D8D9AB32C34ADB34", "A2406481FC1BCAF24DD08E6752E844" "709563FB916227FED598EB621F" } }, { "SHA256", SHA256, SHA256HashSize, { / 1 / { TEST1, length(TEST1), 1, 0, 0, "BA7816BF8F01CFEA4141" "40DE5DAE2223B00361A396177A9CB410FF61F20015AD" }, / 2 / { TEST2_1, length(TEST2_1), 1, 0, 0, "248D6A61D20638B8" "E5C026930C3E6039A33CE45964FF2167F6ECEDD419DB06C1" }, / 3 */ { TEST3, length(TEST3), 1000000, 0, 0, "CDC76E5C9914FB92" "81A1C7E284D73E67F1809A48A497200E046D39CCC7112CD0" },

Eastlake & Hansen Informational [Page 97]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

  /* 4 */ { TEST4, length(TEST4), 10, 0, 0, "594847328451BDFA"
    "85056225462CC1D867D877FB388DF0CE35F25AB5562BFBB5" },
  /* 5 */ { "", 0, 0, 0x68, 5, "D6D3E02A31A84A8CAA9718ED6C2057BE"
    "09DB45E7823EB5079CE7A573A3760F95" },
  /* 6 */ { "\x19", 1, 1, 0, 0, "68AA2E2EE5DFF96E3355E6C7EE373E3D"
    "6A4E17F75F9518D843709C0C9BC3E3D4" },
  /* 7 */ { TEST7_256, length(TEST7_256), 1, 0x60, 3, "77EC1DC8"
    "9C821FF2A1279089FA091B35B8CD960BCAF7DE01C6A7680756BEB972" },
  /* 8 */ { TEST8_256, length(TEST8_256), 1, 0, 0, "175EE69B02BA"
    "9B58E2B0A5FD13819CEA573F3940A94F825128CF4209BEABB4E8" },
  /* 9 */ { TEST9_256, length(TEST9_256), 1, 0xA0, 3, "3E9AD646"
    "8BBBAD2AC3C2CDC292E018BA5FD70B960CF1679777FCE708FDB066E9" },
  /* 10 */ { TEST10_256, length(TEST10_256), 1, 0, 0, "97DBCA7D"
    "F46D62C8A422C941DD7E835B8AD3361763F7E9B2D95F4F0DA6E1CCBC" },
}, SHA256_SEED, { "83D28614D49C3ADC1D6FC05DB5F48037C056F8D2A4CE44"
    "EC6457DEA5DD797CD1", "99DBE3127EF2E93DD9322D6A07909EB33B6399"
    "5E529B3F954B8581621BB74D39", "8D4BE295BB64661CA3C7EFD129A2F7"
    "25B33072DBDDE32385B9A87B9AF88EA76F", "40AF5D3F9716B040DF9408"
    "E31536B70FF906EC51B00447CA97D7DD97C12411F4"
} },

{ "SHA384", SHA384, SHA384HashSize, { /* 1 / { TEST1, length(TEST1), 1, 0, 0, "CB00753F45A35E8BB5A03D699AC65007272C32AB0EDED163" "1A8B605A43FF5BED8086072BA1E7CC2358BAECA134C825A7" }, / 2 / { TEST2_2, length(TEST2_2), 1, 0, 0, "09330C33F71147E83D192FC782CD1B4753111B173B3B05D2" "2FA08086E3B0F712FCC7C71A557E2DB966C3E9FA91746039" }, / 3 / { TEST3, length(TEST3), 1000000, 0, 0, "9D0E1809716474CB086E834E310A4A1CED149E9C00F24852" "7972CEC5704C2A5B07B8B3DC38ECC4EBAE97DDD87F3D8985" }, / 4 / { TEST4, length(TEST4), 10, 0, 0, "2FC64A4F500DDB6828F6A3430B8DD72A368EB7F3A8322A70" "BC84275B9C0B3AB00D27A5CC3C2D224AA6B61A0D79FB4596" }, / 5 / { "", 0, 0, 0x10, 5, "8D17BE79E32B6718E07D8A603EB84BA0478F7FCFD1BB9399" "5F7D1149E09143AC1FFCFC56820E469F3878D957A15A3FE4" }, / 6 / { "\xb9", 1, 1, 0, 0, "BC8089A19007C0B14195F4ECC74094FEC64F01F90929282C" "2FB392881578208AD466828B1C6C283D2722CF0AD1AB6938" }, / 7 / { TEST7_384, length(TEST7_384), 1, 0xA0, 3, "D8C43B38E12E7C42A7C9B810299FD6A770BEF30920F17532" "A898DE62C7A07E4293449C0B5FA70109F0783211CFC4BCE3" }, / 8 / { TEST8_384, length(TEST8_384), 1, 0, 0, "C9A68443A005812256B8EC76B00516F0DBB74FAB26D66591" "3F194B6FFB0E91EA9967566B58109CBC675CC208E4C823F7" }, / 9 */ { TEST9_384, length(TEST9_384), 1, 0xE0, 3, "5860E8DE91C21578BB4174D227898A98E0B45C4C760F0095"

Eastlake & Hansen Informational [Page 98]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

    "49495614DAEDC0775D92D11D9F8CE9B064EEAC8DAFC3A297" },
  /* 10 */ { TEST10_384, length(TEST10_384), 1, 0, 0,
    "4F440DB1E6EDD2899FA335F09515AA025EE177A79F4B4AAF"
    "38E42B5C4DE660F5DE8FB2A5B2FBD2A3CBFFD20CFF1288C0" }
}, SHA384_SEED, { "CE44D7D63AE0C91482998CF662A51EC80BF6FC68661A3C"
    "57F87566112BD635A743EA904DEB7D7A42AC808CABE697F38F", "F9C6D2"
    "61881FEE41ACD39E67AA8D0BAD507C7363EB67E2B81F45759F9C0FD7B503"
    "DF1A0B9E80BDE7BC333D75B804197D", "D96512D8C9F4A7A4967A366C01"
    "C6FD97384225B58343A88264847C18E4EF8AB7AEE4765FFBC3E30BD485D3"
    "638A01418F", "0CA76BD0813AF1509E170907A96005938BC985628290B2"
    "5FEF73CF6FAD68DDBA0AC8920C94E0541607B0915A7B4457F7"
} },

{ "SHA512", SHA512, SHA512HashSize, { /* 1 / { TEST1, length(TEST1), 1, 0, 0, "DDAF35A193617ABACC417349AE20413112E6FA4E89A97EA2" "0A9EEEE64B55D39A2192992A274FC1A836BA3C23A3FEEBBD" "454D4423643CE80E2A9AC94FA54CA49F" }, / 2 / { TEST2_2, length(TEST2_2), 1, 0, 0, "8E959B75DAE313DA8CF4F72814FC143F8F7779C6EB9F7FA1" "7299AEADB6889018501D289E4900F7E4331B99DEC4B5433A" "C7D329EEB6DD26545E96E55B874BE909" }, / 3 / { TEST3, length(TEST3), 1000000, 0, 0, "E718483D0CE769644E2E42C7BC15B4638E1F98B13B204428" "5632A803AFA973EBDE0FF244877EA60A4CB0432CE577C31B" "EB009C5C2C49AA2E4EADB217AD8CC09B" }, / 4 / { TEST4, length(TEST4), 10, 0, 0, "89D05BA632C699C31231DED4FFC127D5A894DAD412C0E024" "DB872D1ABD2BA8141A0F85072A9BE1E2AA04CF33C765CB51" "0813A39CD5A84C4ACAA64D3F3FB7BAE9" }, / 5 / { "", 0, 0, 0xB0, 5, "D4EE29A9E90985446B913CF1D1376C836F4BE2C1CF3CADA0" "720A6BF4857D886A7ECB3C4E4C0FA8C7F95214E41DC1B0D2" "1B22A84CC03BF8CE4845F34DD5BDBAD4" }, / 6 / { "\xD0", 1, 1, 0, 0, "9992202938E882E73E20F6B69E68A0A7149090423D93C81B" "AB3F21678D4ACEEEE50E4E8CAFADA4C85A54EA8306826C4A" "D6E74CECE9631BFA8A549B4AB3FBBA15" }, / 7 / { TEST7_512, length(TEST7_512), 1, 0x80, 3, "ED8DC78E8B01B69750053DBB7A0A9EDA0FB9E9D292B1ED71" "5E80A7FE290A4E16664FD913E85854400C5AF05E6DAD316B" "7359B43E64F8BEC3C1F237119986BBB6" }, / 8 / { TEST8_512, length(TEST8_512), 1, 0, 0, "CB0B67A4B8712CD73C9AABC0B199E9269B20844AFB75ACBD" "D1C153C9828924C3DDEDAAFE669C5FDD0BC66F630F677398" "8213EB1B16F517AD0DE4B2F0C95C90F8" }, / 9 */ { TEST9_512, length(TEST9_512), 1, 0x80, 3, "32BA76FC30EAA0208AEB50FFB5AF1864FDBF17902A4DC0A6"

Eastlake & Hansen Informational [Page 99]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

    "82C61FCEA6D92B783267B21080301837F59DE79C6B337DB2"
    "526F8A0A510E5E53CAFED4355FE7C2F1" },
  /* 10 */ { TEST10_512, length(TEST10_512), 1, 0, 0,
    "C665BEFB36DA189D78822D10528CBF3B12B3EEF726039909"
    "C1A16A270D48719377966B957A878E720584779A62825C18"
    "DA26415E49A7176A894E7510FD1451F5" }
}, SHA512_SEED, { "2FBB1E7E00F746BA514FBC8C421F36792EC0E11FF5EFC3"
    "78E1AB0C079AA5F0F66A1E3EDBAEB4F9984BE14437123038A452004A5576"
    "8C1FD8EED49E4A21BEDCD0", "25CBE5A4F2C7B1D7EF07011705D50C62C5"
    "000594243EAFD1241FC9F3D22B58184AE2FEE38E171CF8129E29459C9BC2"
    "EF461AF5708887315F15419D8D17FE7949", "5B8B1F2687555CE2D7182B"
    "92E5C3F6C36547DA1C13DBB9EA4F73EA4CBBAF89411527906D35B1B06C1B"
    "6A8007D05EC66DF0A406066829EAB618BDE3976515AAFC", "46E36B007D"
    "19876CDB0B29AD074FE3C08CDD174D42169D6ABE5A1414B6E79707DF5877"
    "6A98091CF431854147BB6D3C66D43BFBC108FD715BDE6AA127C2B0E79F"
}

} };

/* Test arrays for HMAC. */ struct hmachash { const char *keyarray[5]; int keylength[5]; const char *dataarray[5]; int datalength[5]; const char resultarray[5]; int resultlength[5]; } hmachashes[HMACTESTCOUNT] = { { / 1 / { "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b\x0b\x0b" }, { 20 }, { "\x48\x69\x20\x54\x68\x65\x72\x65" / "Hi There" / }, { 8 }, { / HMAC-SHA-1 / "B617318655057264E28BC0B6FB378C8EF146BE00", / HMAC-SHA-224 / "896FB1128ABBDF196832107CD49DF33F47B4B1169912BA4F53684B22", / HMAC-SHA-256 / "B0344C61D8DB38535CA8AFCEAF0BF12B881DC200C9833DA726E9376C2E32" "CFF7", / HMAC-SHA-384 / "AFD03944D84895626B0825F4AB46907F15F9DADBE4101EC682AA034C7CEB" "C59CFAEA9EA9076EDE7F4AF152E8B2FA9CB6", / HMAC-SHA-512 */ "87AA7CDEA5EF619D4FF0B4241A1D6CB02379F4E2CE4EC2787AD0B30545E1" "7CDEDAA833B7D6B8A702038B274EAEA3F4E4BE9D914EEB61F1702E696C20" "3A126854"

Eastlake & Hansen Informational [Page 100]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

}, { SHA1HashSize, SHA224HashSize, SHA256HashSize,
  SHA384HashSize, SHA512HashSize }

}, { /* 2 / { "\x4a\x65\x66\x65" / "Jefe" / }, { 4 }, { "\x77\x68\x61\x74\x20\x64\x6f\x20\x79\x61\x20\x77\x61\x6e\x74" "\x20\x66\x6f\x72\x20\x6e\x6f\x74\x68\x69\x6e\x67\x3f" / "what do ya want for nothing?" / }, { 28 }, { / HMAC-SHA-1 / "EFFCDF6AE5EB2FA2D27416D5F184DF9C259A7C79", / HMAC-SHA-224 / "A30E01098BC6DBBF45690F3A7E9E6D0F8BBEA2A39E6148008FD05E44", / HMAC-SHA-256 / "5BDCC146BF60754E6A042426089575C75A003F089D2739839DEC58B964EC" "3843", / HMAC-SHA-384 / "AF45D2E376484031617F78D2B58A6B1B9C7EF464F5A01B47E42EC3736322" "445E8E2240CA5E69E2C78B3239ECFAB21649", / HMAC-SHA-512 / "164B7A7BFCF819E2E395FBE73B56E0A387BD64222E831FD610270CD7EA25" "05549758BF75C05A994A6D034F65F8F0E6FDCAEAB1A34D4A6B4B636E070A" "38BCE737" }, { SHA1HashSize, SHA224HashSize, SHA256HashSize, SHA384HashSize, SHA512HashSize } }, { / 3 / { "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa" }, { 20 }, { "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd" }, { 50 }, { / HMAC-SHA-1 / "125D7342B9AC11CD91A39AF48AA17B4F63F175D3", / HMAC-SHA-224 / "7FB3CB3588C6C1F6FFA9694D7D6AD2649365B0C1F65D69D1EC8333EA", / HMAC-SHA-256 / "773EA91E36800E46854DB8EBD09181A72959098B3EF8C122D9635514CED5" "65FE", / HMAC-SHA-384 / "88062608D3E6AD8A0AA2ACE014C8A86F0AA635D947AC9FEBE83EF4E55966" "144B2A5AB39DC13814B94E3AB6E101A34F27", / HMAC-SHA-512 */

Eastlake & Hansen Informational [Page 101]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

  "FA73B0089D56A284EFB0F0756C890BE9B1B5DBDD8EE81A3655F83E33B227"
  "9D39BF3E848279A722C806B485A47E67C807B946A337BEE8942674278859"
  "E13292FB"
}, { SHA1HashSize, SHA224HashSize, SHA256HashSize,
  SHA384HashSize, SHA512HashSize }

}, { /* 4 / { "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19" }, { 25 }, { "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd" }, { 50 }, { / HMAC-SHA-1 / "4C9007F4026250C6BC8414F9BF50C86C2D7235DA", / HMAC-SHA-224 / "6C11506874013CAC6A2ABC1BB382627CEC6A90D86EFC012DE7AFEC5A", / HMAC-SHA-256 / "82558A389A443C0EA4CC819899F2083A85F0FAA3E578F8077A2E3FF46729" "665B", / HMAC-SHA-384 / "3E8A69B7783C25851933AB6290AF6CA77A9981480850009CC5577C6E1F57" "3B4E6801DD23C4A7D679CCF8A386C674CFFB", / HMAC-SHA-512 / "B0BA465637458C6990E5A8C5F61D4AF7E576D97FF94B872DE76F8050361E" "E3DBA91CA5C11AA25EB4D679275CC5788063A5F19741120C4F2DE2ADEBEB" "10A298DD" }, { SHA1HashSize, SHA224HashSize, SHA256HashSize, SHA384HashSize, SHA512HashSize } }, { / 5 / { "\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c" "\x0c\x0c\x0c\x0c\x0c" }, { 20 }, { "Test With Truncation" }, { 20 }, { / HMAC-SHA-1 / "4C1A03424B55E07FE7F27BE1", / HMAC-SHA-224 / "0E2AEA68A90C8D37C988BCDB9FCA6FA8", / HMAC-SHA-256 / "A3B6167473100EE06E0C796C2955552B", / HMAC-SHA-384 / "3ABF34C3503B2A23A46EFC619BAEF897", / HMAC-SHA-512 */ "415FAD6271580A531D4179BC891D87A6"

Eastlake & Hansen Informational [Page 102]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

}, { 12, 16, 16, 16, 16 }

}, { /* 6 / { "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" }, { 80, 131 }, { "Test Using Larger Than Block-Size Key - Hash Key First" }, { 54 }, { / HMAC-SHA-1 / "AA4AE5E15272D00E95705637CE8A3B55ED402112", / HMAC-SHA-224 / "95E9A0DB962095ADAEBE9B2D6F0DBCE2D499F112F2D2B7273FA6870E", / HMAC-SHA-256 / "60E431591EE0B67F0D8A26AACBF5B77F8E0BC6213728C5140546040F0EE3" "7F54", / HMAC-SHA-384 / "4ECE084485813E9088D2C63A041BC5B44F9EF1012A2B588F3CD11F05033A" "C4C60C2EF6AB4030FE8296248DF163F44952", / HMAC-SHA-512 / "80B24263C7C1A3EBB71493C1DD7BE8B49B46D1F41B4AEEC1121B013783F8" "F3526B56D037E05F2598BD0FD2215D6A1E5295E64F73F63F0AEC8B915A98" "5D786598" }, { SHA1HashSize, SHA224HashSize, SHA256HashSize, SHA384HashSize, SHA512HashSize } }, { / 7 */ { "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" }, { 80, 131 }, { "Test Using Larger Than Block-Size Key and " "Larger Than One Block-Size Data", "\x54\x68\x69\x73\x20\x69\x73\x20\x61\x20\x74\x65\x73\x74\x20" "\x75\x73\x69\x6e\x67\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20" "\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65"

Eastlake & Hansen Informational [Page 103]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

  "\x20\x6b\x65\x79\x20\x61\x6e\x64\x20\x61\x20\x6c\x61\x72\x67"
  "\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73"
  "\x69\x7a\x65\x20\x64\x61\x74\x61\x2e\x20\x54\x68\x65\x20\x6b"
  "\x65\x79\x20\x6e\x65\x65\x64\x73\x20\x74\x6f\x20\x62\x65\x20"
  "\x68\x61\x73\x68\x65\x64\x20\x62\x65\x66\x6f\x72\x65\x20\x62"
  "\x65\x69\x6e\x67\x20\x75\x73\x65\x64\x20\x62\x79\x20\x74\x68"
  "\x65\x20\x48\x4d\x41\x43\x20\x61\x6c\x67\x6f\x72\x69\x74\x68"
  "\x6d\x2e"
  /* "This is a test using a larger than block-size key and a "
      "larger than block-size data.  The key needs to be hashed "
      "before being used by the HMAC algorithm." */
}, { 73, 152 }, {
  /* HMAC-SHA-1 */
  "E8E99D0F45237D786D6BBAA7965C7808BBFF1A91",
  /* HMAC-SHA-224 */
  "3A854166AC5D9F023F54D517D0B39DBD946770DB9C2B95C9F6F565D1",
  /* HMAC-SHA-256 */
  "9B09FFA71B942FCB27635FBCD5B0E944BFDC63644F0713938A7F51535C3A"
  "35E2",
  /* HMAC-SHA-384 */
  "6617178E941F020D351E2F254E8FD32C602420FEB0B8FB9ADCCEBB82461E"
  "99C5A678CC31E799176D3860E6110C46523E",
  /* HMAC-SHA-512 */
  "E37B6A775DC87DBAA4DFA9F96E5E3FFDDEBD71F8867289865DF5A32D20CD"
  "C944B6022CAC3C4982B10D5EEB55C3E4DE15134676FB6DE0446065C97440"
  "FA8C6A58"
}, { SHA1HashSize, SHA224HashSize, SHA256HashSize,
  SHA384HashSize, SHA512HashSize }

} };

/* Test arrays for HKDF. */ struct hkdfhash { SHAversion whichSha; int ikmlength; const char *ikmarray; int saltlength; const char *saltarray; int infolength; const char *infoarray; int prklength; const char *prkarray; int okmlength; const char okmarray; } hkdfhashes[HKDFTESTCOUNT] = { { / RFC 5869 A.1. Test Case 1 */ SHA256, 22, "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"

Eastlake & Hansen Informational [Page 104]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

        "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
    13, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c",
    10, "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9",
    32, "077709362C2E32DF0DDC3F0DC47BBA6390B6C73BB50F9C3122EC844A"
        "D7C2B3E5",
    42, "3CB25F25FAACD57A90434F64D0362F2A2D2D0A90CF1A5A4C5DB02D56"
        "ECC4C5BF34007208D5B887185865"
},
{   /* [RFC 5869](./rfc5869) A.2. Test Case 2 */
    SHA256,
    80, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d"
        "\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b"
        "\x1c\x1d\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29"
        "\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37"
        "\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40\x41\x42\x43\x44\x45"
        "\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f",
    80, "\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d"
        "\x6e\x6f\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b"
        "\x7c\x7d\x7e\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89"
        "\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97"
        "\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5"
        "\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf",
    80, "\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd"
        "\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb"
        "\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9"
        "\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7"
        "\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5"
        "\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff",
    32, "06A6B88C5853361A06104C9CEB35B45C"
        "EF760014904671014A193F40C15FC244",
    82, "B11E398DC80327A1C8E7F78C596A4934"
        "4F012EDA2D4EFAD8A050CC4C19AFA97C"
        "59045A99CAC7827271CB41C65E590E09"
        "DA3275600C2F09B8367793A9ACA3DB71"
        "CC30C58179EC3E87C14C01D5C1F3434F"
        "1D87"
},
{   /* [RFC 5869](./rfc5869) A.3. Test Case 3 */
    SHA256,
    22, "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
        "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
    0, "",
    0, "",
    32, "19EF24A32C717B167F33A91D6F648BDF"
        "96596776AFDB6377AC434C1C293CCB04",
    42, "8DA4E775A563C18F715F802A063C5A31"
        "B8A11F5C5EE1879EC3454E5F3C738D2D"
        "9D201395FAA4B61A96C8"

Eastlake & Hansen Informational [Page 105]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

},
{   /* [RFC 5869](./rfc5869) A.4. Test Case 4 */
    SHA1,
    11, "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
    13, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c",
    10, "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9",
    20, "9B6C18C432A7BF8F0E71C8EB88F4B30BAA2BA243",
    42, "085A01EA1B10F36933068B56EFA5AD81"
        "A4F14B822F5B091568A9CDD4F155FDA2"
        "C22E422478D305F3F896"
},
{   /* [RFC 5869](./rfc5869) A.5. Test Case 5 */
    SHA1,
    80, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d"
        "\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b"
        "\x1c\x1d\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29"
        "\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37"
        "\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40\x41\x42\x43\x44\x45"
        "\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f",
    80, "\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6A\x6B\x6C\x6D"
        "\x6E\x6F\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7A\x7B"
        "\x7C\x7D\x7E\x7F\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89"
        "\x8A\x8B\x8C\x8D\x8E\x8F\x90\x91\x92\x93\x94\x95\x96\x97"
        "\x98\x99\x9A\x9B\x9C\x9D\x9E\x9F\xA0\xA1\xA2\xA3\xA4\xA5"
        "\xA6\xA7\xA8\xA9\xAA\xAB\xAC\xAD\xAE\xAF",
    80, "\xB0\xB1\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xBB\xBC\xBD"
        "\xBE\xBF\xC0\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xCB"
        "\xCC\xCD\xCE\xCF\xD0\xD1\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9"
        "\xDA\xDB\xDC\xDD\xDE\xDF\xE0\xE1\xE2\xE3\xE4\xE5\xE6\xE7"
        "\xE8\xE9\xEA\xEB\xEC\xED\xEE\xEF\xF0\xF1\xF2\xF3\xF4\xF5"
        "\xF6\xF7\xF8\xF9\xFA\xFB\xFC\xFD\xFE\xFF",
    20, "8ADAE09A2A307059478D309B26C4115A224CFAF6",
    82, "0BD770A74D1160F7C9F12CD5912A06EB"
        "FF6ADCAE899D92191FE4305673BA2FFE"
        "8FA3F1A4E5AD79F3F334B3B202B2173C"
        "486EA37CE3D397ED034C7F9DFEB15C5E"
        "927336D0441F4C4300E2CFF0D0900B52"
        "D3B4"
},
{   /* [RFC 5869](./rfc5869) A.6. Test Case 6 */
    SHA1,
    22, "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
        "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
    0, "",
    0, "",
    20, "DA8C8A73C7FA77288EC6F5E7C297786AA0D32D01",
    42, "0AC1AF7002B3D761D1E55298DA9D0506"
        "B9AE52057220A306E07B6B87E8DF21D0"

Eastlake & Hansen Informational [Page 106]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

        "EA00033DE03984D34918"
},
{   /* [RFC 5869](./rfc5869) A.7. Test Case 7. */
    SHA1,
    22, "\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c"
        "\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c",
    0, 0,
    0, "",
    20, "2ADCCADA18779E7C2077AD2EB19D3F3E731385DD",
    42, "2C91117204D745F3500D636A62F64F0A"
        "B3BAE548AA53D423B0D1F27EBBA6F5E5"
        "673A081D70CCE7ACFC48"
}

};

/*

/*

/*

Eastlake & Hansen Informational [Page 107]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

  hexdigits[*str & 0xF]);
sep = " ";

} }

/*

Eastlake & Hansen Informational [Page 108]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

"-B\t# extra bits to add in after string or file input\n"
"-b\textra bits to add (high order bits of #, 0# or 0x#)\n"
"-H\tinput hashstr or randomseed is in hex\n"
, argv0, argv0, argv0, argv0);

exit(1); }

/*

Eastlake & Hansen Informational [Page 109]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

}
putchar('\n');

}

if (printResults && resultarray) { printf(" Should match:\n\t"); for (i = 0, k = 0; i < hashsize; i++, k += 2) { putchar(resultarray[k]); putchar(resultarray[k+1]); putchar(' '); } putchar('\n'); }

if (printPassFail && resultarray) { int ret = checkmatch(Message_Digest, resultarray, hashsize); if ((printPassFail == PRINTPASSFAIL) || !ret) printf("%s %s %s: %s\n", hashname, testtype, testname, ret ? "PASSED" : "FAILED"); } }

/*

if (printResults == PRINTTEXT) { printf("\nTest %d: Iteration %d, Repeat %ld\n\t'", testno+1, loopno, repeatcount); printstr(testarray, length); printf("'\n\t'"); printxstr(testarray, length);

Eastlake & Hansen Informational [Page 110]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

printf("'\n");
printf("    Length=%d bytes (%d bits), ", length, length * 8);
printf("ExtraBits %d: %2.2x\n", numberExtrabits, extrabits);

}

if (info) Message_Digest = malloc(okmlen); memset(&sha, '\343', sizeof(sha)); /* force bad data into struct */ memset(&hmac, '\343', sizeof(hmac)); memset(&hkdf, '\343', sizeof(hkdf));

err = info ? hkdfReset(&hkdf, hashes[hashno].whichSha, keyarray, keylen) : keyarray ? hmacReset(&hmac, hashes[hashno].whichSha, keyarray, keylen) : USHAReset(&sha, hashes[hashno].whichSha); if (err != shaSuccess) { fprintf(stderr, "hash(): %sReset Error %d.\n", info ? "hkdf" : keyarray ? "hmac" : "sha", err); return err; }

for (i = 0; i < repeatcount; ++i) { err = info ? hkdfInput(&hkdf, (const uint8_t *)testarray, length) : keyarray ? hmacInput(&hmac, (const uint8_t *) testarray, length) : USHAInput(&sha, (const uint8_t *) testarray, length); if (err != shaSuccess) { fprintf(stderr, "hash(): %sInput Error %d.\n", info ? "hkdf" : keyarray ? "hmac" : "sha", err); return err; } }

if (numberExtrabits > 0) { err = info ? hkdfFinalBits(&hkdf, extrabits, numberExtrabits) : keyarray ? hmacFinalBits(&hmac, (uint8_t) extrabits, numberExtrabits) : USHAFinalBits(&sha, (uint8_t) extrabits, numberExtrabits); if (err != shaSuccess) { fprintf(stderr, "hash(): %sFinalBits Error %d.\n", info ? "hkdf" : keyarray ? "hmac" : "sha", err); return err; } }

err = info ? hkdfResult(&hkdf, 0, info, infolen,

Eastlake & Hansen Informational [Page 111]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

                      Message_Digest, okmlen) :
    keyarray ? hmacResult(&hmac, Message_Digest) :
               USHAResult(&sha, Message_Digest);

if (err != shaSuccess) { fprintf(stderr, "hash(): %s Result Error %d, could not compute " "message digest.\n", info ? "hkdf" : keyarray ? "hmac" : "sha", err); return err; }

sprintf(buf, "%d", testno+1); printResult(Message_Digest, info ? okmlen : hashsize, hashes[hashno].name, info ? "hkdf standard test" : keyarray ? "hmac standard test" : "sha standard test", buf, resultarray, printResults, printPassFail);

return err; }

/*

if (printResults == PRINTTEXT) { printf("\nTest %d: Iteration %d\n\tSALT\t'", testno+1, loopno); printxstr(hkdfhashes[testno].saltarray, hkdfhashes[testno].saltlength); printf("'\n\tIKM\t'"); printxstr(hkdfhashes[testno].ikmarray, hkdfhashes[testno].ikmlength); printf("'\n\tINFO\t'"); printxstr(hkdfhashes[testno].infoarray, hkdfhashes[testno].infolength); printf("'\n"); printf(" L=%d bytes\n", hkdfhashes[testno].okmlength); }

/* Run hkdf() against the test vectors */ err = hkdf(hkdfhashes[testno].whichSha,

Eastlake & Hansen Informational [Page 112]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

         (const uint8_t *) hkdfhashes[testno].saltarray,
         hkdfhashes[testno].saltlength,
         (const uint8_t *) hkdfhashes[testno].ikmarray,
         hkdfhashes[testno].ikmlength,
         (const uint8_t *) hkdfhashes[testno].infoarray,
         hkdfhashes[testno].infolength, okm,
         hkdfhashes[testno].okmlength);

if (err != shaSuccess) { fprintf(stderr, "hashHkdf(): hkdf Error %d.\n", err); return err; } sprintf(buf, "hkdf %d", testno+1); printResult(okm, hkdfhashes[testno].okmlength, USHAHashName(hkdfhashes[testno].whichSha), "hkdf standard test", buf, hkdfhashes[testno].okmarray, printResults, printPassFail);

/* Now run hkdfExtract() by itself against the test vectors / / to verify the intermediate results. */ err = hkdfExtract(hkdfhashes[testno].whichSha, (const uint8_t *) hkdfhashes[testno].saltarray, hkdfhashes[testno].saltlength, (const uint8_t *) hkdfhashes[testno].ikmarray, hkdfhashes[testno].ikmlength, prk); if (err != shaSuccess) { fprintf(stderr, "hashHkdf(): hkdfExtract Error %d.\n", err); return err; } sprintf(buf, "hkdfExtract %d", testno+1); printResult(prk, USHAHashSize(hkdfhashes[testno].whichSha), USHAHashName(hkdfhashes[testno].whichSha), "hkdf standard test", buf, hkdfhashes[testno].prkarray, printResults, printPassFail);

/* Now run hkdfExpand() by itself against the test vectors / / using the intermediate results from hkdfExtract. */ err = hkdfExpand(hkdfhashes[testno].whichSha, prk, USHAHashSize(hkdfhashes[testno].whichSha), (const uint8_t *)hkdfhashes[testno].infoarray, hkdfhashes[testno].infolength, okm, hkdfhashes[testno].okmlength); if (err != shaSuccess) { fprintf(stderr, "hashHkdf(): hkdfExpand Error %d.\n", err); return err; } sprintf(buf, "hkdfExpand %d", testno+1); printResult(okm, hkdfhashes[testno].okmlength, USHAHashName(hkdfhashes[testno].whichSha), "hkdf standard test", buf, hkdfhashes[testno].okmarray, printResults, printPassFail);

return err;

Eastlake & Hansen Informational [Page 113]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

}

/*

if (!hashfp) { fprintf(stderr, "cannot open file '%s'\n", hashfilename); return shaStateError; }

if (info) Message_Digest = malloc(okmlen); memset(&sha, '\343', sizeof(sha)); /* force bad data into struct */ memset(&hmac, '\343', sizeof(hmac)); memset(&hkdf, '\343', sizeof(hkdf)); err = info ? hkdfReset(&hkdf, hashes[hashno].whichSha, keyarray, keylen) : keyarray ? hmacReset(&hmac, hashes[hashno].whichSha, keyarray, keylen) : USHAReset(&sha, hashes[hashno].whichSha); if (err != shaSuccess) { fprintf(stderr, "hashfile(): %sReset Error %d.\n", info ? "hkdf" : keyarray ? "hmac" : "sha", err); return err; }

if (skipSpaces) while ((c = getc(hashfp)) != EOF) { if (!isspace(c)) { cc = (unsigned char)c; err = info ? hkdfInput(&hkdf, &cc, 1) :

Eastlake & Hansen Informational [Page 114]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

          keyarray ? hmacInput(&hmac, &cc, 1) :
                     USHAInput(&sha, &cc, 1);
    if (err != shaSuccess) {
      fprintf(stderr, "hashfile(): %sInput Error %d.\n",
              info ? "hkdf" : keyarray ? "hmac" : "sha", err);
      if (hashfp != stdin) fclose(hashfp);
      return err;
    }
  }
}

else while ((nread = fread(buf, 1, sizeof(buf), hashfp)) > 0) { err = info ? hkdfInput(&hkdf, buf, nread) : keyarray ? hmacInput(&hmac, buf, nread) : USHAInput(&sha, buf, nread); if (err != shaSuccess) { fprintf(stderr, "hashfile(): %s Error %d.\n", info ? "hkdf" : keyarray ? "hmacInput" : "shaInput", err); if (hashfp != stdin) fclose(hashfp); return err; } }

if (bitcount > 0) err = info ? hkdfFinalBits(&hkdf, bits, bitcount) : keyarray ? hmacFinalBits(&hmac, bits, bitcount) : USHAFinalBits(&sha, bits, bitcount); if (err != shaSuccess) { fprintf(stderr, "hashfile(): %s Error %d.\n", info ? "hkdf" : keyarray ? "hmacFinalBits" : "shaFinalBits", err); if (hashfp != stdin) fclose(hashfp); return err; }

err = info ? hkdfResult(&hkdf, 0, info, infolen, Message_Digest, okmlen) : keyarray ? hmacResult(&hmac, Message_Digest) : USHAResult(&sha, Message_Digest); if (err != shaSuccess) { fprintf(stderr, "hashfile(): %s Error %d.\n", info ? "hkdf" : keyarray ? "hmacResult" : "shaResult", err); if (hashfp != stdin) fclose(hashfp); return err; }

Eastlake & Hansen Informational [Page 115]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

printResult(Message_Digest, info ? okmlen : hashsize, hashes[hashno].name, "file", hashfilename, resultarray, printResults, printPassFail);

if (hashfp != stdin) fclose(hashfp); if (info) free(Message_Digest); return err; }

/*

/* INPUT: Seed - A random seed n bits long */ memcpy(SEED, seed, hashsize); if (printResults == PRINTTEXT) { printf("%s random test seed= '", hashes[hashno].name); printxstr(seed, hashsize); printf("'\n"); }

for (j = 0; j < randomcount; j++) { /* MD0 = MD1 = MD2 = Seed; / memcpy(MD[0], SEED, hashsize); memcpy(MD[1], SEED, hashsize); memcpy(MD[2], SEED, hashsize); for (i=3; i<1003; i++) { / Mi = MDi-3 || MDi-2 || MDi-1; / USHAContext Mi; memset(&Mi, '\343', sizeof(Mi)); / force bad data into struct / USHAReset(&Mi, hashes[hashno].whichSha); USHAInput(&Mi, MD[i-3], hashsize); USHAInput(&Mi, MD[i-2], hashsize); USHAInput(&Mi, MD[i-1], hashsize); / MDi = SHA(Mi); */ USHAResult(&Mi, MD[i]); }

Eastlake & Hansen Informational [Page 116]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/* MDj = Seed = MDi; */
memcpy(SEED, MD[i-1], hashsize);

/* OUTPUT: MDj */
sprintf(buf, "%d", j);
printResult(SEED, hashsize, hashes[hashno].name, "random test",
  buf, resultarrays ? resultarrays[j] : 0, printResults,
  (j < RANDOMCOUNT) ? printPassFail : 0);

} }

/*

fprintf(stderr, "%s: Unknown hash name: '%s'\n", argv0, opt); usage(argv0); return 0; }

/*

for (hashno = hashnolow; hashno <= hashnohigh; hashno++) { memset(&usha, '\343', sizeof(usha)); /* force bad data */ USHAReset(&usha, hashno); USHAResult(&usha, Message_Digest); err = USHAInput(&usha, (const unsigned char *)"foo", 3); if (printResults == PRINTTEXT) printf ("\nError %d. Should be %d.\n", err, shaStateError);

Eastlake & Hansen Informational [Page 117]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

if ((printPassFail == PRINTPASSFAIL) ||
    ((printPassFail == PRINTFAIL) && (err != shaStateError)))
  printf("%s se: %s\n", hashes[hashno].name,
    (err == shaStateError) ? "PASSED" : "FAILED");

err = USHAFinalBits(&usha, 0x80, 3);
if (printResults == PRINTTEXT)
  printf ("\nError %d. Should be %d.\n", err, shaStateError);
if ((printPassFail == PRINTPASSFAIL) ||
    ((printPassFail == PRINTFAIL) && (err != shaStateError)))
  printf("%s se: %s\n", hashes[hashno].name,
    (err == shaStateError) ? "PASSED" : "FAILED");

err = USHAReset(0, hashes[hashno].whichSha);
if (printResults == PRINTTEXT)
   printf("\nError %d. Should be %d.\n", err, shaNull);
if ((printPassFail == PRINTPASSFAIL) ||
    ((printPassFail == PRINTFAIL) && (err != shaNull)))
   printf("%s usha null: %s\n", hashes[hashno].name,
    (err == shaNull) ? "PASSED" : "FAILED");

switch (hashno) {
  case SHA1: err = SHA1Reset(0); break;
  case SHA224: err = SHA224Reset(0); break;
  case SHA256: err = SHA256Reset(0); break;
  case SHA384: err = SHA384Reset(0); break;
  case SHA512: err = SHA512Reset(0); break;
}
if (printResults == PRINTTEXT)
   printf("\nError %d. Should be %d.\n", err, shaNull);
if ((printPassFail == PRINTPASSFAIL) ||
    ((printPassFail == PRINTFAIL) && (err != shaNull)))
   printf("%s sha null: %s\n", hashes[hashno].name,
    (err == shaNull) ? "PASSED" : "FAILED");

} }

/* replace a hex string in place with its value */ int unhexStr(char *hexstr) { char *o = hexstr; int len = 0, nibble1 = 0, nibble2 = 0; if (!hexstr) return 0; for ( ; *hexstr; hexstr++) { if (isalpha((int)(unsigned char)(*hexstr))) { nibble1 = tolower((int)(unsigned char)(*hexstr)) - 'a' + 10; } else if (isdigit((int)(unsigned char)(*hexstr))) { nibble1 = *hexstr - '0';

Eastlake & Hansen Informational [Page 118]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

} else {
  printf("\nError: bad hex character '%c'\n", *hexstr);
}
if (!*++hexstr) break;
if (isalpha((int)(unsigned char)(*hexstr))) {
  nibble2 = tolower((int)(unsigned char)(*hexstr)) - 'a' + 10;
} else if (isdigit((int)(unsigned char)(*hexstr))) {
  nibble2 = *hexstr - '0';
} else {
  printf("\nError: bad hex character '%c'\n", *hexstr);
}
*o++ = (char)((nibble1 << 4) | nibble2);
len++;

} return len; }

int main(int argc, char **argv) { int i, err; int loopno, loopnohigh = 1; int hashno, hashnolow = 0, hashnohigh = HASHCOUNT - 1; int testno, testnolow = 0, testnohigh; int ntestnohigh = 0; int printResults = PRINTTEXT; int printPassFail = 1; int checkErrors = 0; char *hashstr = 0; int hashlen = 0; const char *resultstr = 0; char *randomseedstr = 0; int runHmacTests = 0; int runHkdfTests = 0; char *hmacKey = 0; int hmaclen = 0; char *info = 0; int infolen = 0, okmlen = 0; int randomcount = RANDOMCOUNT; const char *hashfilename = 0; const char *hashFilename = 0; int extrabits = 0, numberExtrabits = 0; int strIsHex = 0;

if ('A' != 0x41) { fprintf(stderr, "%s: these tests require ASCII\n", argv[0]); }

while ((i = getopt(argc, argv,

Eastlake & Hansen Informational [Page 119]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

                  "6b:B:def:F:h:i:Hk:l:L:mpPr:R:s:S:t:wxX")) != -1)
switch (i) {
  case 'b': extrabits = strtol(optarg, 0, 0); break;
  case 'B': numberExtrabits = atoi(optarg); break;
  case 'd': runHkdfTests = 1; break;
  case 'e': checkErrors = 1; break;
  case 'f': hashfilename = optarg; break;
  case 'F': hashFilename = optarg; break;
  case 'h': hashnolow = hashnohigh = findhash(argv[0], optarg);
    break;
  case 'H': strIsHex = 1; break;
  case 'i': info = optarg; infolen = strlen(optarg); break;
  case 'k': hmacKey = optarg; hmaclen = strlen(optarg); break;
  case 'l': loopnohigh = atoi(optarg); break;
  case 'L': okmlen = strtol(optarg, 0, 0); break;
  case 'm': runHmacTests = 1; break;
  case 'P': printPassFail = 0; break;
  case 'p': printResults = PRINTNONE; break;
  case 'R': randomcount = atoi(optarg); break;
  case 'r': randomseedstr = optarg; break;
  case 's': hashstr = optarg; hashlen = strlen(hashstr); break;
  case 'S': resultstr = optarg; break;
  case 't': testnolow = ntestnohigh = atoi(optarg) - 1; break;
  case 'w': printResults = PRINTRAW; break;
  case 'x': printResults = PRINTHEX; break;
  case 'X': printPassFail = 2; break;
  case '6': printResults = PRINTBASE64; break;
  default: usage(argv[0]);
  }

if (strIsHex) { hashlen = unhexStr(hashstr); unhexStr(randomseedstr); hmaclen = unhexStr(hmacKey); infolen = unhexStr(info); } testnohigh = (ntestnohigh != 0) ? ntestnohigh: runHmacTests ? (HMACTESTCOUNT-1) : runHkdfTests ? (HKDFTESTCOUNT-1) : (TESTCOUNT-1); if ((testnolow < 0) || (testnohigh >= (runHmacTests ? HMACTESTCOUNT : TESTCOUNT)) || (hashnolow < 0) || (hashnohigh >= HASHCOUNT) || (hashstr && (testnolow == testnohigh)) || (randomcount < 0) || (resultstr && (!hashstr && !hashfilename && !hashFilename)) || ((runHmacTests || hmacKey) && randomseedstr) || (hashfilename && hashFilename) ||

Eastlake & Hansen Informational [Page 120]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

  (info && ((infolen <= 0) || (okmlen <= 0))) ||
  (info && !hmacKey))
usage(argv[0]);

/*

for (loopno = 1; (loopno <= loopnohigh) && (err == shaSuccess);
     ++loopno) {
  if (hashstr)
    err = hash(0, loopno, hashno, hashstr, hashlen, 1,
      numberExtrabits, extrabits, (const unsigned char *)hmacKey,
      hmaclen, (const uint8_t *) info, infolen, okmlen, resultstr,
      hashes[hashno].hashsize, printResults, printPassFail);

  else if (randomseedstr)
    randomtest(hashno, randomseedstr, hashes[hashno].hashsize, 0,
      randomcount, printResults, printPassFail);

  else if (hashfilename)
    err = hashfile(hashno, hashfilename, extrabits,
                   numberExtrabits, 0,
                   (const unsigned char *)hmacKey, hmaclen,
                   (const uint8_t *) info, infolen, okmlen,
                   resultstr, hashes[hashno].hashsize,
                   printResults, printPassFail);

  else if (hashFilename)
    err = hashfile(hashno, hashFilename, extrabits,
                   numberExtrabits, 1,
                   (const unsigned char *)hmacKey, hmaclen,
                   (const uint8_t *) info, infolen, okmlen,
                   resultstr, hashes[hashno].hashsize,
                   printResults, printPassFail);

  else /* standard tests */ {
    for (testno = testnolow;
         (testno <= testnohigh) && (err == shaSuccess); ++testno) {
      if (runHmacTests) {
        err = hash(testno, loopno, hashno,
                   hmachashes[testno].dataarray[hashno] ?
                   hmachashes[testno].dataarray[hashno] :
                   hmachashes[testno].dataarray[1] ?

Eastlake & Hansen Informational [Page 121]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

                   hmachashes[testno].dataarray[1] :
                   hmachashes[testno].dataarray[0],
                   hmachashes[testno].datalength[hashno] ?
                   hmachashes[testno].datalength[hashno] :
                   hmachashes[testno].datalength[1] ?
                   hmachashes[testno].datalength[1] :
                   hmachashes[testno].datalength[0],
                   1, 0, 0,
                   (const unsigned char *)(
                    hmachashes[testno].keyarray[hashno] ?
                    hmachashes[testno].keyarray[hashno] :
                    hmachashes[testno].keyarray[1] ?
                    hmachashes[testno].keyarray[1] :
                    hmachashes[testno].keyarray[0]),
                   hmachashes[testno].keylength[hashno] ?
                   hmachashes[testno].keylength[hashno] :
                   hmachashes[testno].keylength[1] ?
                   hmachashes[testno].keylength[1] :
                   hmachashes[testno].keylength[0],
                   0, 0, 0,
                   hmachashes[testno].resultarray[hashno],
                   hmachashes[testno].resultlength[hashno],
                   printResults, printPassFail);
      } else if (runHkdfTests) {
        err = hashHkdf(testno, loopno, hashno,
                   printResults, printPassFail);
      } else { /* sha tests */
        err = hash(testno, loopno, hashno,
                   hashes[hashno].tests[testno].testarray,
                   hashes[hashno].tests[testno].length,
                   hashes[hashno].tests[testno].repeatcount,
                   hashes[hashno].tests[testno].numberExtrabits,
                   hashes[hashno].tests[testno].extrabits,
                   0, 0, 0, 0, 0,
                   hashes[hashno].tests[testno].resultarray,
                   hashes[hashno].hashsize,
                   printResults, printPassFail);
      }
    }
    if (!runHmacTests && !runHkdfTests) {
      randomtest(hashno, hashes[hashno].randomtest,
        hashes[hashno].hashsize, hashes[hashno].randomresults,
        RANDOMCOUNT, printResults, printPassFail);
    }
  }
}

}

Eastlake & Hansen Informational [Page 122]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

/* Test some error returns */ if (checkErrors) { testErrors(hashnolow, hashnohigh, printResults, printPassFail); }

return 0; }

/*

9. Security Considerations

This document is intended to provide convenient open source access by the Internet community to the United States of America Federal Information Processing Standard Secure Hash Algorithms (SHAs) [FIPS 180-2], HMACs based thereon, and HKDF. No independent assertion of the security of these functions by the authors for any particular use is intended.

See [[RFC6194](./rfc6194 ""Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms"")] for a discussion of SHA-1 Security Considerations.

10. Acknowledgements

Thanks for the corrections to [[RFC4634](./rfc4634 ""US Secure Hash Algorithms (SHA and HMAC-SHA)"")] that were provided by Alfred Hoenes and Jan Andres and to Alfred's comments on the document hereof.

Also to the following in alphabetic order, whose comments lead to improvements in the document: James Carlson, Russ Housley, Tero Kivinen, Juergen Quittek, and Sean Turner.

Eastlake & Hansen Informational [Page 123]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

11. References

11.1. Normative References

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed- Hashing for Message Authentication", RFC 2104, February 1997.

[RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)", RFC 5869, May 2010.

[SHS] "Secure Hash Standard", United States of American, National Institute of Science and Technology, Federal Information Processing Standard (FIPS) 180-3, http://csrc.nist.gov/publications/fips/fips180-3/ fips180-3_final.pdf.

[US-ASCII] ANSI, "USA Standard Code for Information Interchange", X3.4, American National Standards Institute: New York, 1968.

11.2. Informative References

[RFC3174] Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1 (SHA1)", RFC 3174, September 2001.

          [RFC3874]  Housley, R., "A 224-bit One-way Hash Function:
          SHA-224", [RFC 3874](./rfc3874), September 2004.

[RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 4055, June 2005.

[RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker, "Randomness Requirements for Security", BCP 106, RFC 4086, June 2005.

[RFC4634] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and HMAC-SHA)", RFC 4634, July 2006.

[RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms", RFC 6194, March 2011.

Eastlake & Hansen Informational [Page 124]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

[SHAVS] "The Secure Hash Algorithm Validation System (SHAVS)", http://csrc.nist.gov/groups/STM/cavp/documents/shs/ SHAVS.pdf, July 2004.

Eastlake & Hansen Informational [Page 125]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

Appendix: Changes from RFC 4634

The following changes were made to RFC 4634 to produce this document:

  1. Add code for HKDF and brief text about HKDF with pointer to [[RFC5869](./rfc5869 ""HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"")].

  2. Fix numerous errata filed against [[RFC4634](./rfc4634 ""US Secure Hash Algorithms (SHA and HMAC-SHA)"")] as included below. Note that in no case did the old code return an incorrect hash value.

    2.a. Correct some of the error return values which has erroneously been "shaNull" to the correct "shaInputTooLong" error. 2.b. Update comments and variable names within the code for consistency and clarity and other editorial changes. 2.c. The previous code for SHA-384 and SHA-512 would stop after 2^93 bytes (2^96 bits). The fixed code handles up to 2^125 bytes (2^128 bits). 2.d. Add additional error checking including a run time check in the test driver to detect attempts to run the test driver after compilation using some other character set instead of [[US-ASCII](#ref-US-ASCII ""USA Standard Code for Information Interchange"")].

  3. Update boilerplate, remove special license in [[RFC4634](./rfc4634 ""US Secure Hash Algorithms (SHA and HMAC-SHA)"")] as new boilerplate mandates simplified BSD license.

  4. Replace MIT version of getopt with new code to satisfy IETF incoming and outgoing license restrictions.

  5. Add references to [[RFC6194](./rfc6194 ""Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms"")].

  6. Other assorted editorial improvements.

Eastlake & Hansen Informational [Page 126]


RFC 6234 SHAs, HMAC-SHAs, and HKDF May 2011

Author's Address

Donald Eastlake Huawei 155 Beaver Street Milford, MA 01757 USA

Telephone: +1-508-333-2270 EMail: d3e3e3@gmail.com

Tony Hansen AT&T Laboratories 200 Laurel Ave. Middletown, NJ 07748 USA

Telephone: +1-732-420-8934 EMail: tony+shs@maillennium.att.com

Eastlake & Hansen Informational [Page 127]