Host extensions for IP multicasting (original) (raw)

[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

Obsoleted by: 1054, 1112 UNKNOWN

Network Working Group S. E. Deering Request for Comments: 988 Stanford University July 1986

              Host Extensions for IP Multicasting

1. STATUS OF THIS MEMO

This memo specifies the extensions required of a host implementation of the Internet Protocol (IP) to support internetwork multicasting. This specification supersedes that given in RFC-966, and constitutes a proposed protocol standard for IP multicasting in the ARPA-Internet. The reader is directed to RFC-966 for a discussion of the motivation and rationale behind the multicasting extension specified here. Distribution of this memo is unlimited.

2. INTRODUCTION

IP multicasting is defined as the transmission of an IP datagram to a "host group", a set of zero or more hosts identified by a single IP destination address. A multicast datagram is delivered to all members of its destination host group with the same "best-efforts" reliability as regular unicast IP datagrams, i.e. the datagram is not guaranteed to arrive at all members of the destination group or in the same order relative to other datagrams.

The membership of a host group is dynamic; that is, hosts may join and leave groups at any time. There is no restriction on the location or number of members in a host group, but membership in a group may be restricted to only those hosts possessing a private access key. A host may be a member of more than one group at a time. A host need not be a member of a group to send datagrams to it.

A host group may be permanent or transient. A permanent group has a well-known, administratively assigned IP address. It is the address, not the membership of the group, that is permanent; at any time a permanent group may have any number of members, even zero. A transient group, on the other hand, is assigned an address dynamically when the group is created, at the request of a host. A transient group ceases to exist, and its address becomes eligible for reassignment, when its membership drops to zero.

The creation of transient groups and the maintenance of group membership information is the responsibility of "multicast agents", entities that reside in internet gateways or other special-purpose hosts. There is at least one multicast agent directly attached to every IP network or subnetwork that supports IP multicasting. A host requests the creation of new groups, and joins or leaves existing groups, by exchanging messages with a neighboring agent.

Deering [Page 1]


RFC 988 July 1986 Host Extensions for IP Multicasting

Multicast agents are also responsible for internetwork delivery of multicast IP datagrams. When sending a multicast IP datagram, a host transmits it to a local network multicast address which identifies all neighboring members of the destination host group. If the group has members on other networks, a multicast agent becomes an additional recipient of the local multicast and relays the datagram to agents on each of those other networks, via the internet gateway system. Finally, the agents on the other networks each transmit the datagram as a local multicast to their own neighboring members of the destination group.

This memo specifies the extensions required of a host IP implementation to support IP multicasting, where a "host" is any internet host or gateway other than those serving as multicast agents. The algorithms and protocols used within and between multicast agents are transparent to non-agent hosts and will be specified in a separate document. This memo also does not specify how local network multicasting is accomplished for all types of network, although it does specify the required service interface to an arbitrary local network and gives an Ethernet specification as an example. Specifications for other types of network will be the subject of future memos.

3. LEVELS OF CONFORMANCE

There are three levels of conformance to this specification:

Level 0: no support for IP multicasting.

  There is, at this time, no requirement that all IP implementations
  support IP multicasting.  Level 0 hosts will, in general, be
  unaffected by multicast activity.  The only exception arises on
  some types of local network, where the presence of level 1 or 2
  hosts may cause misdelivery of multicast IP datagrams to level 0
  hosts.  Such datagrams can easily be identified by the presence of
  a class D IP address in their destination address field; they
  should be quietly discarded by hosts that do not support IP
  multicasting.  Class D addresses are defined in [section 4](#section-4) of this
  memo.

Deering [Page 2]


RFC 988 July 1986 Host Extensions for IP Multicasting

Level 1: support for sending but not receiving multicast IP datagrams.

  Level 1 allows a host to partake of some multicast-based services,
  such as resource location or status reporting, but it does not
  allow a host to create or join any host groups.  An IP
  implementation may be upgraded from level 0 to level 1 very easily
  and with little new code.  Only sections [4](#section-4), [5](#section-5), and [6](#section-6) of this memo
  are applicable to level 1 implementations.

Level 2: full support for IP multicasting.

  Level 2 allows a host to create, join and leave host groups, as
  well as send IP datagrams to host groups.  It requires
  implementation of the Internet Group Management Protocol (IGMP)
  and extension of the IP and local network service interfaces
  within the host.  All of the following sections of this memo are
  applicable to level 2 implementations.

4. HOST GROUP ADDRESSES

Host groups are identified by class D IP addresses, i.e. those with "1110" as their high-order four bits. The remaining 28 bits are unstructured as far as hosts are concerned. The addresses of well-known, permanent groups are to be published in "Assigned Numbers". Class E IP addresses, i.e. those with "1111" as their high-order four bits, are reserved for future addressing modes.

Appendix II contains some background discussion of several issues related to host group addresses.

Deering [Page 3]


RFC 988 July 1986 Host Extensions for IP Multicasting

5. MODEL OF A HOST IP IMPLEMENTATION

The multicast extensions to a host IP implementation are specified in terms of the layered model illustrated below. In this model, ICMP and (for level 2 hosts) IGMP are considered to be implemented within the IP module, and the mapping of IP addresses to local network addresses is considered to be the responsibility of local network modules. This model is for expository purposes only, and should not be construed as constraining an actual implementation.

  |                                                          |
  |              Upper-Layer Protocol Modules                |
  |__________________________________________________________|

--------------------- IP Service Interface ----------------------- __________________________________________________________ | | | | | | ICMP | IGMP | | IP ||| | Module | | | |__________________________________________________________|

---------------- Local Network Service Interface ----------------- __________________________________________________________ | | | | Local | IP-to-local address mapping | | Network | (e.g. ARP) | | Modules |_____________________________| | (e.g. Ethernet) | | |

To support level 2 IP multicasting, a host IP implementation must provide three new services: (1) sending multicast IP datagrams, (2) receiving multicast IP datagrams, and (3) managing group membership. Only the first service need be provided in level 1 hosts. Each of these services is described in a separate section, below. For each service, extensions are specified for the IP service interface, the IP module, the local network service interface, and an Ethernet local network module. Extensions to local network modules other than Ethernet are mentioned briefly, but are not specified in detail.

Deering [Page 4]


RFC 988 July 1986 Host Extensions for IP Multicasting

6. SENDING MULTICAST IP DATAGRAMS

6.1. Extensions to the IP Service Interface

  No change to the IP service interface is required to support the
  sending of multicast IP datagrams.  An upper-layer protocol module
  merely specifies an IP host group destination, rather than an
  individual IP destination, when it invokes the existing "Send IP"
  operation.

6.2. Extensions to the IP Module

  To support the sending of multicast IP datagrams, the IP module
  must be extended to recognize IP host group addresses when routing
  outgoing datagrams.  Most IP implementations include the following
  logic:

     if IP-destination is on the same local network,
        send datagram locally to IP-destination
     else
        send datagram locally to GatewayTo(IP-destination)

  To allow multicast transmissions, the routing logic must be
  changed to:

     if IP-destination is on the same local network
     or IP-destination is a host group,
        send datagram locally to IP-destination
     else
        send datagram locally to GatewayTo(IP-destination)

  If the sending host is itself a member of the destination group, a
  copy of the outgoing datagram must be looped-back for local
  delivery if and only if loopback was requested when the host
  joined the group (see [section 8.1](#section-8.1)).  (This issue does not arise in
  level 1 implementations.)

  On hosts attached to more than one network, each multicast IP
  datagram must be transmitted via one network interface only,
  leaving it to the multicast agents to effect delivery to any other
  required networks.

  A host group address should not be placed in the source address
  field of an outgoing IP datagram.  A host group address may be
  used in a source routing option as the last element only.

  It should be noted that a small IP time-to-live (TTL) value can

Deering [Page 5]


RFC 988 July 1986 Host Extensions for IP Multicasting

  prevent delivery to some members of a destination group.  Thus, a
  large TTL value should be used to reach all members.  Conversely,
  a small TTL value can be used to advantage to reach only "nearby"
  members of a widely-dispersed group.  In clusters of low-delay
  local area networks, the TTL field acts as a hop limit; thus, one
  can perform expanding-ring searches by starting with a TTL of 1
  and incrementing on each retransmission, up to some limit defined
  by the diameter of the cluster.

6.3. Extensions to the Local Network Service Interface

  No change to the local network service interface is required to
  support the sending of multicast IP datagrams.  The IP module
  merely specifies an IP host group destination, rather than an
  individual IP destination, when it invokes the existing "Send
  Local" operation.

6.4. Extensions to an Ethernet Local Network Module

  The Ethernet directly supports the sending of local multicast
  packets by allowing multicast addresses in the destination field
  of Ethernet packets.  All that is needed to support the sending of
  multicast IP datagrams is a procedure for mapping IP host group
  addresses to Ethernet multicast addresses.

  An IP host group address is mapped to an Ethernet multicast
  address by placing the low-order 28-bits of the IP address into
  the low-order 28 bits of an Ethernet address.  The high-order 20
  bits of the Ethernet address are set to a well-known value, to be
  published in "Assigned Numbers".

  [At time of publication of this memo, a block of Ethernet
  multicast addresses with 28 unspecified bits had not yet been
  obtained from the allocating authority.  If such a block of
  addresses cannot be obtained, an alternative mapping scheme will
  be specified.]

6.5. Extensions to Local Network Modules other than Ethernet

  Other networks that directly support multicasting, such as rings
  or buses conforming to the IEEE 802.2 standard, can be handled the
  same way as Ethernet for the purpose of sending multicast IP
  datagrams.  For a network that supports broadcast but not
  multicast, such as the Experimental Ethernet, all IP host group
  addresses can be mapped to a single local broadcast address (at
  the cost of increased overhead on all local hosts).  For a
  point-to-point networks like the ARPANET or a public data network

Deering [Page 6]


RFC 988 July 1986 Host Extensions for IP Multicasting

  (X.25), all IP host group addresses might be mapped to the
  well-known local address of an IP multicast agent; an agent on
  such a network would take responsibility for completing multicast
  delivery within the network as well as among networks.

7. RECEIVING MULTICAST IP DATAGRAMS

7.1. Extensions to the IP Service Interface

  No change to the IP service interface is required to support the
  reception of multicast IP datagrams.  Incoming multicast IP
  datagrams are delivered to upper-layer protocol modules using the
  same "Receive IP" operation as normal, unicast datagrams.

7.2. Extensions to the IP Module

  To support the reception of multicast IP datagrams, the IP module
  must be extended to recognize the addresses of IP host groups to
  which the host currently belongs, in addition to the host's
  individual IP address(es).  An incoming datagram destined to one
  of those group addresses is processed exactly the same way as
  datagrams destined to one of the host's individual addresses.
  Incoming datagrams destined to groups to which the host does not
  belong are discarded without generating any error report.

  On hosts attached to more than one network, if a datagram arrives
  via one network interface, destined for a group to which the host
  belongs only on a different interface, the datagram is quietly
  discarded.  (This should occur only as a result of inadequate
  multicast address filtering in the local network module.)

  An incoming datagram is not rejected for having an IP host group
  address in its source address field or anywhere in a source
  routing option.

  An ICMP error message (Destination Unreachable, Time Exceeded,
  Parameter Problem, Source Quench, or Redirect) is never generated
  in response to a datagram destined to an IP host group.

7.3. Extensions to the Local Network Service Interface

  No change to the local network service interface is required to
  support the reception of multicast IP datagrams.  Incoming local
  network packets, whether multicast or unicast, are delivered to
  the IP module using the same "Receive Local" operation.

Deering [Page 7]


RFC 988 July 1986 Host Extensions for IP Multicasting

7.4. Extensions to an Ethernet Local Network Module

  To support the reception of multicast IP datagrams, an Ethernet
  module must be able to receive packets addressed to the Ethernet
  multicast addresses that correspond to the host's IP host group
  addresses.  It is highly desirable to take advantage of any
  address filtering capabilities that the Ethernet hardware
  interface may have, so that the host only receives packets that
  are destined to it.

  Unfortunately, many current Ethernet interfaces have a small limit
  on the number of addresses that the hardware can be configured to
  recognize.  However, an implementation must be capable of
  listening on an arbitrary number of Ethernet multicast addresses,
  which may mean "opening up" the address filter to accept all
  multicast packets during those periods when the number of
  addresses exceeds the limit of the filter.

  For interfaces with inadequate hardware address filtering, it may
  be desirable (for performance reasons) to perform Ethernet address
  filtering within the software of the Ethernet module.  This is not
  mandatory, however, because the IP module performs its own
  filtering based on IP destination addresses.

7.5. Extensions to Local Network Modules other than Ethernet

  Other multicast networks, such as IEEE 802.2 networks, can be
  handled the same way as Ethernet for the purpose of receiving
  multicast IP datagrams.  For pure broadcast networks, such as the
  Experimental Ethernet, all incoming broadcast packets can be
  accepted and passed to the IP module for IP-level filtering.  On a
  point-to-point network, multicast IP datagrams will arrive as
  local network unicasts, so no change to the local network module
  should be necessary.

Deering [Page 8]


RFC 988 July 1986 Host Extensions for IP Multicasting

8. MANAGING GROUP MEMBERSHIP

8.1. Extensions to the IP Service Interface

  To allow upper-layer protocol modules to request that their host
  create, join, or leave a host group, the IP service interface must
  be extended to offer the following three new operations:

     CreateGroup ( private, loopback )
                              --> outcome, group-address, access-key

  The CreateGroup operation requests the creation of a new,
  transient host group, with this host as its only member.  The
  "private" argument specifies if the group is to be private or
  public.  The "loopback" argument specifies whether or not
  datagrams sent from this host to the group should be delivered
  locally as well as to other member hosts.  The "outcome" result
  indicates whether the request is granted or denied.  If it is
  granted, a new 32-bit IP host group address is returned, along
  with a 64-bit access key which is zero for public groups and
  non-zero for private groups.  The request may be denied due to
  lack of response from a multicast agent, or lack of resources.

     JoinGroup ( group-address, access-key, loopback ) --> outcome

  The JoinGroup operation requests that this host become a member of
  the host group identified by "group-address", with the specified
  access key. The "loopback" argument specifies whether or not
  datagrams sent from this host to the group should be delivered
  locally as well as to other member hosts.  The "outcome" result
  indicates whether the request is granted or denied.  The request
  may be denied due to lack of response from a multicast agent, lack
  of resources, an invalid group address, an incorrect access key,
  or already being a member.

     LeaveGroup ( group-address, access-key ) --> outcome

  The LeaveGroup operation requests that this host give up its
  membership in the host group identified by "group-address", with
  the specified access key.  The "outcome" result indicates whether
  the request is granted or denied.  The request may be denied due
  to an invalid group address, an incorrect access key, or not
  currently being a member.

  Each of these operations may take up to a minute or more to
  complete, depending on the number of IGMP retransmissions

Deering [Page 9]


RFC 988 July 1986 Host Extensions for IP Multicasting

  performed within the IP module, and time required for a multicast
  agent to generate a reply. However, typical delays should be on
  the order of a few seconds.

  Besides the LeaveGroup operation, a host loses its membership in a
  group whenever the host or its IP module crashes, or, in rare
  circumstances, when a multicast agent revokes its membership.  The
  IP service interface should provide some means of informing an
  upper-layer module when its membership has been revoked.
  Membership may be revoked due to lack of resources, deallocation
  of the group address, or the discovery of another host group using
  the same group address with a different access key.  (See [Appendix](#appendix-I)
  [I](#appendix-I)I for discussion of address recycling issues.)

  It is important to observe that IP group membership is per-host,
  rather than per-process.  An IP service interface should not allow
  multiple processes to invoke JoinGroup operations for the same
  group as a way of achieving delivery to more than process.  The IP
  module delivers each incoming datagram, whether multicast or
  unicast, to the single upper-layer protocol module identified by
  the protocol field in the datagram's IP header; it is an
  upper-layer issue whether or not to deliver incoming datagrams to
  more than one process, perhaps using the concept of "process
  groups" or "shared ports".

8.2. Extensions to the IP Module

  Within the IP module, the membership management operations are
  supported by the Internet Group Management Protocol (IGMP),
  specified in [Appendix I](#appendix-I). As well as having messages corresponding
  to each of the operations specified above, IGMP also specifies a
  "deadman timer" procedure whereby hosts periodically confirm their
  memberships with the multicast agents.

  The IP module must maintain a data structure listing the IP
  addresses of all host groups to which the host currently belongs,
  along with each group's loopback policy, access key, and timer
  variables.  This data structure is used by the IP multicast
  transmission service to know which outgoing datagrams to loop
  back, and by the reception service to know which incoming
  datagrams to accept.  The purpose of IGMP and the management
  interface operations is to maintain this data structure.

  On hosts attached to more than one network, each membership is
  associated with a particular network interface.  On such a host
  the management interface operations above may each require an
  additional parameter specifying to which interface the create,

Deering [Page 10]


RFC 988 July 1986 Host Extensions for IP Multicasting

  join, or leave request applies.  The group membership data
  structure must also be extended to associate an interface with
  each membership.  If a host joins the same host group on more than
  one network interface, it can expect to receive multiple copies of
  each datagram sent to that group.

8.3. Extensions to the Local Network Service Interface

  To allow an IP module to control what packets should be accepted
  by the local network module, it is necessary to extend the local
  network service interface with the following two new operations:

     AcceptAddress ( group-address )

     RejectAddress ( group-address )

  where "group-address" is an IP host group address.  The
  AcceptAddress operation requests the local network module to
  accept and deliver up subsequently arriving packets destined to
  the local network address corresponding to "group-address".  The
  RejectAddress operation requests the local network module to stop
  delivering up packets destined to the local network address
  corresponding to "group-address".

  Any local network module is free to ignore RejectAddress requests,
  and may deliver up packets destined to more addresses than just
  those specified in AcceptAddress requests, if it is unable to
  filter incoming packets adequately.

8.4. Extensions to an Ethernet Local Network Module

  An Ethernet module responds to AcceptAddress operations by adding
  the corresponding Ethernet multicast address to its acceptance
  filter for incoming packets.  A RejectAddress operation causes the
  corresponding Ethernet address to be dropped from the filter.  For
  Ethernet interfaces with a limit on the number of addresses that
  can be added to the filter, the Ethernet software module must
  detect when that threshold is exceeded and open up the filter to
  accept all multicast packets.  It should also detect when the
  number of addresses drops below the threshold and revert to
  individual address filtering.

8.5. Extensions to Local Network Modules other than Ethernet

  Other multicast networks, such as IEEE 802.2 networks, can be
  handled the same way as Ethernet for the purpose of controlling
  address filtering.  For a pure broadcast network or a

Deering [Page 11]


RFC 988 July 1986 Host Extensions for IP Multicasting

  point-to-point network, the AcceptAddress and RejectAddress
  operations may have no effect; all incoming packets could be
  passed to the IP module for IP-level filtering.

Deering [Page 12]


RFC 988 July 1986 Host Extensions for IP Multicasting

APPENDIX I. INTERNET GROUP MANAGEMENT PROTOCOL (IGMP)

The Internet Group Management Protocol (IGMP) is used between IP hosts and their immediate neighbor multicast agents to support the creation of transient groups, the addition and deletion of members of a group, and the periodic confirmation of group membership. IGMP is an asymmetric protocol and is specified here from the point of view of a host, rather than a multicast agent.

Like ICMP, IGMP is a integral part of IP. It is required to be implemented in full by all hosts conforming to level 2 of the IP multicasting specification. IGMP messages are encapsulated in IP datagrams, with an IP protocol number of 2. All IGMP messages have the following format:

0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Code | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identifier | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Group Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |

| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Type

  There are eight types of IGMP message:

     1 = Create Group Request
     2 = Create Group Reply

     3 = Join Group Request
     4 = Join Group Reply

     5 = Leave Group Request
     6 = Leave Group Reply

     7 = Confirm Group Request
     8 = Confirm Group Reply

Deering [Page 13]


RFC 988 July 1986 Host Extensions for IP Multicasting

Code

  In a Create Group Request message, the code field indicates if the
  new host group is to be public or private:

     0 = public
     1 = private

  In all other Request messages, the code field contains zero.

  In a Reply message, the Code field specifies the outcome of the
  request:

     0       = request granted
     1       = request denied,  no resources
     2       = request denied,  invalid code
     3       = request denied,  invalid group address
     4       = request denied,  invalid access key
     5 - 255 = request pending, retry in this many seconds

Checksum

  The checksum is the 16-bit one's complement of the one's
  complement sum of the IGMP message starting with the IGMP Type.
  For computing the checksum, the checksum field should be zero.

Identifier

  In a Confirm Group Request message, the identifier field contains
  zero.

  In all other Request messages, the identifier field contains a
  value to distinguish the request from other requests by the same
  host.

  In a Reply message, the identifier field contains the same value
  as in the corresponding Request message.

Deering [Page 14]


RFC 988 July 1986 Host Extensions for IP Multicasting

Group Address

  In a Create Group Request message, the group address field
  contains zero.

  In all other Request messages, the group address field contains a
  host group address.

  In a Create Group Reply message, the group address field contains
  either a newly allocated host group address (if the request is
  granted) or zero (if denied).

  In all other Reply messages, the group address field contains the
  same host group address as in the corresponding Request message.

Access Key

  In a Create Group Request message, the access key field contains
  zero.

  In all other Request messages, the access key field contains the
  access key assigned to the host group identified in the Group
  Address field (zero for public groups).

  In a Create Group Reply message, the access key field contains
  either a non-zero 64-bit number (if the request for a private
  group is granted) or zero.

  In all other Reply messages, the access key field contains the
  same access key as in the corresponding Request.

Deering [Page 15]


RFC 988 July 1986 Host Extensions for IP Multicasting

Protocol Rules

  Request messages are sent only by hosts.  Reply messages are sent
  only by multicast agents.  If a host receives an IGMP message of a
  type other than the four Reply types specified above, the message
  is discarded.

  A Request message is sent with its IP destination field containing
  the well-known address of the Multicast Agent Group.  The IP
  time-to-live field is initialized by the sender to 1, in order to
  limit the scope of the request to immediate neighbor multicast
  agents only.  The IP source address field contains the individual
  IP address of the sending host.

  A Reply message is sent only in response to a Request message.
  Its IP destination address field contains the individual address
  of the host that sent the corresponding Request.  (A Confirm Group
  Reply may also be sent to the host group address specified in its
  corresponding Confirm Group Request.)  The IP source address field
  contains the individual IP address of the replying multicast
  agent.

  When a host sends a new Create Group, Join Group, or Leave Group
  Request message, it supplies an arbitrary identifier that it has
  not used within the last T0 seconds.  (It is usually sufficient
  just to increment the identifier for each new request.)  The host
  initializes a timer to T1 seconds and a retransmission counter to
  zero.  If a Reply message with a matching identifier is not
  received before the timer expires, it is reset to T1 seconds and
  the retransmission counter is incremented.  If the counter is less
  than N1, the host retransmits the Request message with the same
  identifier.  If the counter equals N1, the host gives up; if the
  request was to create or join a group, it is deemed to have
  failed; if the request was to leave a group, it is deemed to have
  succeeded.

  If a "request pending" code is received in a matching reply to a
  Create Group, Join Group, or Leave Group Request, the timer is
  reset to the number of seconds specified by the code and the
  retransmission counter is reset to zero.  The new timer value
  applies to one timeout interval only -- if the timer expires, it
  is reset to T1 seconds, the counter is incremented, and the
  request is retransmitted.

  The first matching Reply to a Create Group, Join Group, or Leave
  Group Request containing a "request granted" or "request denied"
  code determines the outcome of the request.  Any subsequent or

Deering [Page 16]


RFC 988 July 1986 Host Extensions for IP Multicasting

  non-matching Replies are discarded by the host.  However, if a
  host receives an affirmative Create Group Reply or Join Group
  Reply that neither matches an outstanding Request nor contains the
  address of a group to which the host belongs, the host should
  immediately send a Leave Group Request for the unexpected group
  address.

  A "request granted" reply to a Create Group Request implies that,
  as well as the group being created, the requesting host is granted
  membership in the group, i.e. there is no need to send a separate
  Join Group Request.

  Confirm Group Request messages must be sent periodically by hosts
  to inform the neighboring multicast agent(s) of the hosts'
  continuing membership in the specified groups.  If an agent does
  not receive a Confirm Group Request message for a particular group
  within an agent-defined interval, it stops delivering datagrams
  destined to that group.

  For each group to which it belongs, a host maintains a
  confirmation timer and a variable t.  The variable t is
  initialized to T2 seconds. Whenever the host's request to create
  or join a group is granted, and whenever the host either sends a
  Confirm Group Request or receives a Confirm Group Reply with a
  "request granted" code for the group, the host sets the group's
  timer to a random number uniformly distributed between t and t +
  T3 seconds.  If the host receives a a Confirm Group Reply with a
  "request pending" code, t is changed to the value of the code and
  the timer is reset to a random number between the new t and t +
  T3.  The variable t retains its value until another "request
  pending" code is received.  Whenever the timer expires, the host
  sends a Confirm Group Request.

  Even if a host fails to receive Confirm Group Replies to its
  Requests, it continues to consider itself a member of the group,
  because it may still be able to receive multicast datagrams from
  other hosts on the same local network.  Only if a host receives a
  "request denied" code in a Confirm Group Reply does it stop
  sending Confirm Group Requests and consider its membership to be
  revoked.

  Multicast agents respond to Confirm Group Request messages by
  sending Confirm Group Reply messages either to the individual
  sender of the Request or to the host group address specified in
  the Request.  By sending back a Confirm Group Reply to all
  neighboring members of a group, a multicast agent is able to reset
  every member's timer with a single packet.  The randomization of

Deering [Page 17]


RFC 988 July 1986 Host Extensions for IP Multicasting

  the timers is intended to cause only the one member whose timer
  expires first to send a Confirm Group Request, stimulating a Reply
  to reset all the timers.  The use of the "request pending" codes
  allows the multicast agent to control the rate at which it
  receives Confirm Group Requests.

Protocol Timing Constants

  The following timing constants are specified for IGMP.  They are
  subject to change as a result of operational experience.

  T0 = 300 seconds  minimum recycle time for identifiers

  T1 = 2 seconds    retrans. interval for Create/Join/Leave Requests

  N1 = 5 tries      retrans. limit for Create/Join/Leave Requests

  T2 = 15 seconds   initial value for Confirm Request variable t

  T3 = 15 seconds   random range for Confirm Request variable t

Deering [Page 18]


RFC 988 July 1986 Host Extensions for IP Multicasting

APPENDIX II. HOST GROUP ADDRESS ISSUES

This appendix is not part of the IP multicasting specification, but provides background discussion of several issues related to IP host group addresses.

Group Address Binding

  The binding of IP host group addresses to physical hosts may be
  considered a generalization of the binding of IP unicast
  addresses.  An IP unicast address is statically bound to a single
  local network interface on a single IP network.  An IP host group
  address is dynamically bound to a set of local network interfaces
  on a set of IP networks.

  It is important to understand that an IP host group address is NOT
  bound to a set of IP unicast addresses.  The multicast agents do
  not need to maintain a list of individual members of each host
  group.  For example, a multicast agent attached to an Ethernet
  need associate only a single Ethernet multicast address with each
  host group having local members, rather than a list of the
  members' individual IP or Ethernet addresses.

Group Addresses as Logical Addresses

  Host group addresses have been defined specifically for use in the
  destination address field of multicast IP datagrams.  However, the
  fact that group addresses are location-independent (they are not
  statically bound to a single network interface) suggests possible
  uses as more general "logical addresses", both in the source as
  well as the destination address field of datagrams.  For example,
  a mobile IP host might have a host group address as its only
  identity, used as the source of datagrams it sends.  Whenever the
  mobile host moved from one network to another, it would join its
  own group on the new network and depart from the group on the old
  network.  Other hosts communicating with the mobile one would deal
  only with the group address and would be unaware of, and
  unaffected by, the changing network location of the mobile host.

  Host group addresses cannot, however, be used to solve all
  problems of internetwork logical addressing, such as delivery to
  the "nearest" or the "least loaded" network interface of a
  multi-homed host. Furthermore, there are hazards in using group
  addresses in the source address field of datagrams when the group
  actually contains more than one host.  For instance, the IP
  datagram reassembly algorithm relies on every host using a
  different source address.  Also, errors in a datagram sent with a

Deering [Page 19]


RFC 988 July 1986 Host Extensions for IP Multicasting

  group source address may result in error reports being returned to
  all members of the group, not just the sender.  In view of these
  hazards, this memo specifies the use of host group addresses only
  as destinations of datagrams, either in the destination address
  field or as the last element of a source routing option.  However,
  it is recommended that datagrams with a group source address be
  accepted without complaint, thereby allowing other implementations
  to experiment with logical addressing applications of host group
  addresses.

Recycling of Transient Host Group Addresses

  Since host group addresses are of fixed, relatively small size,
  transient group addresses must be recycled to satisfy continuing
  requests for creation of new groups.  The multicast agents make an
  effort to ensure that a group has no members anywhere in the
  internet before allocating its address to a new group.  However,
  under certain conditions of internetwork partitioning and
  membership migration, it is impossible to guarantee unique
  allocation of an address without seriously compromising the
  availability and robustness of host groups. Furthermore, hosts
  that are unaware that a particular group has ceased to exist may
  send datagrams to it long after its address has been assigned to a
  new group.  Therefore, hosts should be prepared for the
  possibility of misdelivery of multicast IP datagrams to unintended
  hosts, even in private groups.  Such misdelivery can only be
  detected at a level above IP, using higher-level identifiers or
  authentication tokens.  (The access key of a private group might
  be used in some applications as such an identifier.)  Of course,
  there are other threats to privacy of communication in the
  internet, besides group address collision, such as untrustworthy
  gateways or unsecured networks. End-to-end encryption is an
  effective defense against such threats.

Deering [Page 20]