radiation-resistant fibers (original) (raw)
Definition: optical fibers which exhibit relatively little performance degradation when exposed to high-energy gamma or other radiation
Alternative terms: radiation-hardened fibers, radiation-tolerant fibers
Category:
fiber optics and waveguides
- fibers
- specialty fibers
* phosphate fibers
* tapered fibers
* highly nonlinear fibers
* dispersion-engineered fibers
* radiation-resistant fibers
- specialty fibers
Related: fibersspecialty fibersphotodarkeningspace-qualified lasers
Opposite term: radiation-sensitive fibers
Page views in 12 months: 848
DOI: 10.61835/vhx Cite the article: BibTex BibLaTex plain textHTML Link to this page! LinkedIn
Content quality and neutrality are maintained according to our editorial policy.
đŚ For purchasing radiation-resistant fibers, use the RP Photonics Buyer's Guide â an expert-curated directory for finding all relevant suppliers, which also offers advanced purchasing assistance.
Contents
Operation of Fiber Devices under High Radiation Exposure
Physical Mechanisms Behind Radiation-induced Degradation
Methods for Improving Radiation Resistance of Fibers
Avoiding Non-essential Impurities
Hydrogen, Deuterium or Oxygen Loading
Side Effects of Radiation Hardening
Consistency of Fiber Properties
Summary:
This article provides a comprehensive overview of how high radiation exposure affects optical fibers and fiber devices, a critical consideration for applications in space, nuclear facilities, and high-energy physics. It explains the primary degradation mechanisms, such as radiation-induced attenuation (RIA), luminescence, and refractive index changes. The text details the underlying physical causes, including the formation of microscopic defects (color centers), and how they are influenced by the fiber's material composition, including dopants like germania or rare-earth ions.
Furthermore, the article explores various methods for improving radiation resistance, also known as radiation hardening. These methods include using pure silica cores, beneficial dopants like fluorine and cerium, hydrogen loading, and developing special fiber coatings. Finally, the challenges in reliably predicting fiber performance in radiation environments are discussed.
(This summary was generated with AI based on the article content and has been reviewed by the articleâs author.)
Operation of Fiber Devices under High Radiation Exposure
In certain applications of optical fibers and fiber-based components, the fibers may be exposed to substantial amounts of radiation:
- Space satellites on various kinds of Earth orbits are exposed to galactic and extra-galactic cosmic rays. In addition, there are energetic solar particles, which may directly arrive or are trapped in Earth's magnetic field. In effect, there is a wide range of radiation, including protons and electrons, neutrons, heavy ions, gamma rays (($\gamma$) rays) and X-rays. Some of it has very high quantum or particle energies. This can affect technology for optical inter-satellite communications and LIDAR (for Earth exploration), such as fiber amplifiers and passive fibers. The dose rate is normally not very high, but during more than 10 years of service time the cumulative radiation dose may be substantial.
- To a lesser extent, fibers in airplanes are affected, for example in fiber-optic links and gyroscopes.
- In high-energy physics experiments, e.g. involving particle accelerators or laser-induced nuclear fusion, fibers are used for optical fiber communications, transferring large amounts of data. The fibers may be exposed e.g. to synchrotron radiation (particularly intense at wigglers and undulators), bremsstrahlung or directly to particle radiation.
- Nuclear power plants and sites for the storage of nuclear waste may be equipped with communications fibers, and also with distributed fiber-optic sensors, some of which may be used for monitoring conditions around nuclear reactors in areas exposed to high levels of radiation. For example, intense neutron irradiation with extremely high lifetime doses occur near fission reactors. Similar challenges would arise in future fusion reactors.
- Medical imaging and cancer therapies can involve X-rays or proton radiation, for example, and optical fibers for various purposes.
Fibers which are substantially less affected by radiation than others are called radiation-resistant fibers, even if they are not completely immune against radiation effects. They may be used in space-qualified lasers, for example.
Types of Fiber Degradation
In such applications, problems may arise from the degradation of fibers (mostly silica fibers) by the received radiation:
- The primary problem is usually radiation-induced attenuation (RIA), i.e., an increase of the propagation losses by induced absorption and possibly Rayleigh scattering of light. However, much of those losses may disappear after the irradiation e.g. within a couple of minutes or an hour, i.e., the fiber can to some extent exhibit a spontaneous recovery. Also, there are cases where the introduced absorption initially rises monotonically but then saturates with further irradiation or is even reduced.
- In some cases, radiation-induced luminescence (or radiation-induced emission) or Cerenkov light guided in a fiber core is problematic, e.g. disturbing measurements with fiber-optic sensors. Such luminescence may be strong during the irradiation, but there can also be long-lived phosphorescence.
- Further, there can be problems with radiation-induced changes in refractive index â particularly relevant for fiber Bragg gratings as used in certain fiber-optic sensors. A typical observation is that the Bragg wavelength, which may be essential for measurements, is modified. Note that refractive index changes are usually associated with changes in ultraviolet absorption via KramersâKronig relations.
- Additional fiber properties may be affected which are relevant for certain fiber-optic sensors â for example, the properties related to Brillouin scattering.
- Fiber coatings can also be strongly affected by radiation: It can make coatings brittle, thus increasing microbend losses under stress, and lead to outgassing.
Generally, such effects can lead to a reduction in performance or even to the complete loss of essential functions. In extreme cases, a single nanosecond-long intense radiation pulse in a physics experiment can introduce propagation losses beyond 1000 dB/m in standard telecom fibers. Therefore, radiation-resistant fibers, a kind of specialty fibers, are needed. They are also called radiation-hardened (particularly when specific measures have been applied) or radiation-tolerant.
Note that other technologies such as electronics and optoelectronics are also to some extent radiation-sensitive; fibers are by no means unique in terms of radiation-induced degradation. For example, the electronics of robots used for inspection or repair purposes in high-radiation areas are known to fail after a relatively short time of operation. Optical fibers also have substantial advantages in terms of their immunity to non-ionizing radiation; for example, even extremely intense RF noise cannot disturb the operation of fiber-optic communication links.
There are also cases where radiation-induced effects in fibers are utilized for measuring accumulated doses and/or real-time dose rates.
Note that problems with radiation-induced effects in different applications can be quantitatively and qualitatively very different due to several reasons:
- The type and amount of radiation to which fibers are exposed can be very different. It can also make a big difference whether a certain radiation dose is slowly accumulated over time or occurs by an intense radiation flash.
- Different lengths of fiber are used in different cases, between a few centimeters and many kilometers.
- The transmitted light can be in different wavelength regions, which can be very differently affected by the radiation. Sensitivities also arise from different requirements e.g. on measurement accuracies.
- The used fibers are of different types, optimized for different applications, and can exhibit very different radiation sensitivity. For example, active fibers are generally much more radiation-sensitive than passive fibers.
- In some applications, light in the fiber causes helpful photo-bleaching (see below), which reduces the problem.
Simulations of Fiber Degradation
When an active fiber in a fiber amplifier, for example, develops increased propagation losses, for example, an important question is how much that will impact the overall system performance. Such things can be simulated with the RP Fiber Power software, which is a very flexible tool for such work.
Physical Mechanisms Behind Radiation-induced Degradation
The main challenge is usually radiation-induced attenuation. This can be caused by the generation of microscopic defects by the radiation. There are also effects on already existing defects (precursors):
- Some defects have been present in the fiber preform already. For example, the fiber glass naturally does not have a perfectly regular microscopic structure like a single crystal, but rather a more complicated random structure which involves various kinds of defects. For example, in silica fibers there can be a substantial density of nonbridging oxygen hole centers (NBOHC), per-oxy linkages (oxygen interstitials) and oxygen vacancies. The concentration of certain defects can be strongly affected by small deviations from perfect stoichiometry. Also, there are defects related to impurities like hydroxyl (OH) ions, chlorine (Cl) and various metals. Radiation can transform such defects such that new absorption bands arise.
- Further defects may be created by mechanical stress during the fiber drawing process. This is particularly the case for fibers drawn at high speed, although details of the fiber drawing tower can substantially modify the results.
- Radiation can ionize existing defects, but also create new defects. In particular, neutron radiation is known to cause substantial structural defects.
- It is known that various frequently used dopants â in the fiber core, but sometimes also in the fiber cladding â severely increase radiation-induced losses. Examples are germania, phosphorus, aluminum, and particularly certain rare earth ions (e.g. Yb3+, Er3+, Tm3+ and Ho3+) as used in active fibers for fiber amplifiers and lasers as well superluminescent sources. In addition to rare earth ions, one often dopes with substances like alumina to improve the incorporation of the rare earth ions (avoid clustering), but such additional dopants can further increase the radiation sensitivity.
The arising defects often act as color centers, absorbing light in a wide range of wavelengths. Frequently, they cause strong ultraviolet absorption, with substantial tails into the visible spectral region, but much less into the infrared. Nevertheless, some amount of infrared absorption can be induced, partly with the underlying physical details not being clearly identified yet.
The relative importance of different contributions to radiation-induced attenuation depends very much on the type of fiber.
The self-healing of radiation-induced loss is largely based on thermally activated processes. Therefore, it may be strongly accelerated (by orders of magnitude) if the temperature is substantially increased. At the same time, however, detrimental effects involved in the build-up of induced absorption may also be accelerated.
In some applications, there are photo-bleaching effects, i.e., the reduction of radiation-induced absorption caused by light which is sent through the fiber during operation. This can already have a substantial impact for milliwatt-level optical powers, of course with a substantial dependence of optical wavelength.
Radiation may also induce luminescence, again involving certain microscopic defects which can be electronically excited by radiation, followed by spontaneous emission of light.
Methods for Improving Radiation Resistance of Fibers
There is no general method for achieving perfect resistance to radiation, i.e., for avoiding any level of radiation-induced degradation in fibers. However, with various measures one can achieve substantial improvements:
Avoiding Non-essential Impurities
It can be helpful to avoid certain non-essential extrinsic impurities such as chlorine. This is not always easy, however, e.g. because preform fabrication processes involving chlorine have been worked out to reduce hydroxyl content, and new processes then need to be developed to achieve that with other means. Nevertheless, for example radiation-hardened pure silica has been developed.
Dopants
Further, one may try to avoid otherwise intentionally introduced dopants like germania and alumina; their functions then need to be replaced in some ways. For example, instead of the refractive index increase in the fiber core by germanium doping, one may use a pure silica core in conjunction with a fluorine-doped (index-depressed) cladding.
Some dopants have been found to increase radiation resistance. For example, fluorine doping appears to be generally helpful; one may thus have a lightly fluorine-doped fiber core surrounded by a more highly doped fluorine-doped cladding [10]. Both multimode and single-mode fibers can be made with such designs. Also, there are nitrogen-doped fibers with substantially improved radiation hardness.
Another example is the addition of cerium to erbium-doped fibers [14]. That way, even active fibers can be made which can better tolerate radiation.
Hydrogen, Deuterium or Oxygen Loading
It has been found that loading a fiber with hydrogen gas (H2) or with deuterium is generally reducing the radiation sensitivity [2, 3]. For that, the fiber is exposed to high-pressure hydrogen gas at an elevated temperature for some period of time, allowing some hydrogen to diffuse into the glass. Unfortunately, even at room temperature the hydrogen may also diffuse out of the glass again later on within a short time, and common polymer coatings cannot prevent that. Therefore, certain metallic coatings have been developed which prevent that effect.
It has also been found that irradiation of a fiber directly after hydrogen loading creates a permanent beneficial effect, even if the hydrogen can diffuse out of the glass later on.
Loading a fiber with oxygen (O2) has also been found to be beneficial. In that case, the diffusion constant at room temperature is extremely small, so that a later oxygen loss is normally not occurring to a relevant extent within several years.
Fiber Drawing
To some limited extent, one can also achieve improvements by optimizing the fiber drawing process, which causes some amount of built-in mechanical stress, which in turn has an effect on the density of certain defects.
Hollow-core Fibers
Hollow-core fibers, where most of the guided light propagates in a hollow region, i.e., in air, naturally are less sensitive to radiation effects [18]. This is also a promising route as far as other requirements on the fibers can also be satisfied.
Improved Coatings
Some materials used in ordinary fiber coatings are relatively radiation-sensitive, but can be improved by modifying the chemical formation. For example, acrylates can be radiation-hardened by adding aromatic substances and/or radical scavengers or antioxidants. Polyimides are naturally much more radiation-resistant than acrylates. Hybrid inorganicâorganic (ormocer / sol-gel) coatings are quite promising, but still in research for special applications.
Side Effects of Radiation Hardening
Methods of improving the radiation resistance of fibers (e.g. applying additional dopants) are often called radiation hardening. Some of these measures may compromise other performance features of fibers, but may be acceptable as part of a trade-off. Note that the effectiveness of certain measures of radiation hardening can very much depend on the application context.
Additional Measures
Depending on the situation, there may be other possible measures to mitigate the problem:
- One can sometimes shield fibers against the radiation, e.g. in extreme radiation environments such as nuclear reactors, where effective radiation shielding can be indispensable. Shielding may be particularly effective for fiber coils, but less practical for elongated fibers in fiber-optic links or distributed sensors.
- One may optimize system architectures such that the sensitivity to radiation effects is reduced, for example by using shorter fibers.
- One may incorporate additional operational margins into system designs, e.g. use enhanced data transmitter powers or enhanced receivers such that higher propagation losses can be tolerated.
- Thermal annealing can reverse radiation effects, but due to the required high temperatures, that method is not very practical.
- Photobleaching defects by sending blue light through a fiber can substantially mitigate the problem, even with low optical powers as are easily available from blue laser diodes [20].
Prediction of Performance
Particularly for delicate applications like space missions or in nuclear facilities, a reliable prediction of the effects of radiation is highly desirable. Unfortunately, for various reasons this is generally quite hard to accomplish. Therefore, one can often only achieve relatively uncertain estimates and requires substantial safety margins to avoid serious problems. Here, it obviously helps to have fibers which have been subject to effective radiation hardening procedures.
Quantifying Radiation Doses
The received radiation dose is commonly quantified in units of Gray = joules of absorbed radiation energy per kilogram of the receiving material (here typically silica). This is not just a measure of how much radiation is in the environment because it depends on the absorption properties of the fiber material, which themselves depend on the type and energy of the relevant radiation. Estimating the radiation dose of a fiber during a space mission of a certain duration, for example, is not trivial; one needs to add up the contributions of different types and energy ranges of radiation, considering their absorption in the fiber material.
In the case of irradiation with particles like neutrons, one instead uses fluence values â the number of particles received per unit area. The particle type and energy need to be specified in addition.
A dose rate is the dose received per unit time, for example in units of Gy/s or Gy/d (Gray per second or day).
There can be substantial uncertainties concerning the radiation dose to be expected, for example if fibers are used in nuclear facilities, where possible nuclear accidents and their consequences cannot be reliably predicted.
Even if the radiation dose is exactly known, it also needs to be taken into account that the same dose from different types of radiation can have different effects in the fibers. Therefore, measured effects for one type of radiation may not allow one to fully predict the reaction to other radiation. (Unfortunately, it is hardly practical to do a wide range of irradiation tests, for example with gamma radiation in different quantum energy bands, and all this for different fiber types.)
Furthermore, it matters whether a certain radiation dose is slowly accumulated over time or occurs from intense radiation within a short time, or as radiation flashes with certain time intervals for recovery in between.
Note that different applications involve very different radiation levels. For example, space satellites experience rather low dose rates of e.g. below 10â3 Gy/h, although often with strong time dependence, with exposure over possibly many years and with no realistic option of replacing degraded fibers. On the other hand, certain high-energy physics experiments can lead to extreme dose rates of more than 1 MGy/s, while the lifetime dose may not be larger than in a space mission. Therefore, certain fibers may be considered as very radiation-tolerant concerning one application, while being clearly unsuitable for another one.
Dynamics of Radiation Effects
As mentioned already, radiation can initiate complicated dynamics in fibers. For example, certain microscopic defects can be generated, while others can be transformed into forms with different optical effects. The competition of different processes can lead to curious types of response, for example induced attenuation which initially rises and then decreases again. At the same time, thermally activated processes can take place. That also introduces a substantial dependence of the ambient temperature, which particularly in the case of space missions can vary strongly.
For reliable predictions based on physical modeling, one would need to develop rather sophisticated models, taking into account a wide range of material data (some of which are quite subtle and difficult to reliably assess) as well as the time-dependent dose rate and temperature for which the evolution is investigated. Only for a limited range of cases, kinetic models have been developed with a substantial predictive power. Some simple models can be analytically solved, leading to dose-dependent attenuation e.g. with a power law or saturating exponential functions.
Consistency of Fiber Properties
Unfortunately, it may not always be guaranteed that fiber properties including those related to radiation resistance are completely consistent, for example from batch to batch. This is because such properties can depend on minor concentrations of impurities, which may not be perfectly constant in the used raw materials. Besides, it is not simple and fast to regularly check rates of radiation-induced attenuation, for example.
Therefore, particularly critical applications, for example space missions with no realistic chance of correcting mistakes later on, particularly rely on carefully designed and diligently observed protocols and practices in fiber fabrication and quality control.
Frequently Asked Questions
This FAQ section was generated with AI based on the article content and has been reviewed by the articleâs author (RP).
What happens to optical fibers when they are exposed to radiation?
They can suffer from degradation, primarily through an increase in signal loss called radiation-induced attenuation (RIA). Other effects include unwanted light generation (luminescence) and changes in the refractive index, which can affect components like fiber Bragg gratings.
What is radiation-induced attenuation (RIA)?
RIA is the increase in propagation losses in an optical fiber caused by radiation. The radiation creates or modifies microscopic defects, called color centers, which absorb light and thus attenuate the signal passing through the fiber.
What are radiation-resistant fibers?
Radiation-resistant fibers, also called radiation-hardened or radiation-tolerant fibers, are specialty fibers designed to be significantly less affected by radiation. They are crucial for applications in space, nuclear power plants, and high-energy physics experiments.
How can the radiation resistance of optical fibers be improved?
Resistance is improved by using pure silica cores, avoiding detrimental dopants like germania, adding beneficial dopants like fluorine or cerium, and loading the fiber with hydrogen. Using hollow-core fibers, where light travels in air, is also an effective approach.
Why are active fibers in fiber amplifiers so sensitive to radiation?
Active fibers contain rare-earth ions (e.g., erbium or ytterbium) and often co-dopants like alumina. These materials greatly increase the formation of radiation-induced defects, making the fibers far more sensitive to radiation than standard passive fibers.
What is photobleaching in irradiated optical fibers?
Photobleaching is the reduction of radiation-induced absorption caused by the light transmitted through the fiber itself. Even milliwatt-level optical powers can help to reverse some of the radiation damage, acting as a form of in-situ recovery.
In which applications are radiation-resistant fibers essential?
They are essential in environments with high radiation, such as space satellites for communications and LIDAR, nuclear facilities for sensing and data transfer, high-energy physics experiments, and some medical therapies involving X-rays or proton radiation.
Why is it difficult to predict how a fiber will perform in a radiation environment?
Predictions are challenging because the degradation depends on many factors, including the type and energy of the radiation, the dose rate, temperature, and the specific fiber composition. The dynamics involve complex, competing processes of defect creation and annealing.
Suppliers
Sponsored content: The RP Photonics Buyer's Guide contains six suppliers for radiation-resistant fibers. Among them:
â hardware
For more than a decade, Exail (formerly iXblue) has developed a unique know-how in the design of optical fibers in radiative environments such as nuclear power plants, high energy physics labs, nuclear waste repository sites and even all the way into space. Exail develops and maintains a comprehensive product line of fibers designed to fit many of such applications. Our fibers can be used for data transmission, sensing or experiment monitoring.
More fibers are available on stock and we have furthermore the ability to custom design your fiber based on your specific application. Do not hesitate to contact us with your specific technical requirements.
Benefits and features:
- low radiation-induced attenuation
- low bending losses
- chemical core compositions adapted to each radiative environment
- large choice of coatings for harsh environments
- outstanding mechanical protection
Bibliography
| [1] | J. Shah, âEffects of environmental nuclear radiation on optical fibersâ, Bell System Technical Journal 54 (7): 1207 (1975) |
|---|---|
| [2] | J. E. Shelby, âRadiation effects in hydrogen impregnated vitreous silicaâ, J. Appl. Phys. 50, 3702 (1979); doi:10.1063/1.326275 |
| [3] | K. Nagasawa et al., âImprovement of radiation resistance of pure silica core fibers by hydrogen treatmentâ, Japan. J. Appl. Phys. 24 (9R), 1224 (1985) |
| [4] | J. Stone, âInteractions of hydrogen and deuterium with silica optical fibres: a reviewâ, J. Lightwave Technol. 5, 712 (1987); doi:10.1109/JLT.1987.1075562 |
| [5] | T. Shikama et al., âBehavior of radiation-resistant optical fibers under irradiation in a fission reactorâ, J. Nuclear Materials 212 (1), 421 (1994); doi:10.1016/0022-3115(94)90097-3 |
| [6] | K. Sanada et al., âRadiation resistance characteristics of graded-index fibers with a core of Ge-, F-doped or B and F-codoped SiO2 glassâ, J. Non-Crystalline Solids 189 (3), 283 (1995); doi:10.1016/0022-3093(95)00233-2 |
| [7] | D. L. Griscom, âRadiation hardening of pure-silica-core optical fibers: reduction of induced absorption bands associated with self-trapped holesâ, Appl. Phys. Lett. 71, 175 (1997); doi:10.1063/1.119493 |
| [8] | A. Lino and J. Tamura, âRadiation resistivity in silica optical fibersâ, J. Lightwave Technol. 6 (2), 145 (1998); doi:10.1109/50.3981 |
| [9] | A.L. Tomashuk and K. M. Golant, âRadiation-resistant and radiation-sensitive silica optical fibersâ, Proc. SPIE 4083, 188 (2000); doi:10.1117/12.385646 |
| [10] | K. Aikawa et al., âRadiation-resistant single-mode optical fibersâ, Fujikura Technical Review, p. 9 (2008) |
| [11] | H. Henschel et al., âDevelopment of highly radiation resistant fiber Bragg gratingsâ, IEEE Transactions on Nuclear Science 58 (4), 2103 (2011); doi:10.1109/TNS.2011.2160204 |
| [12] | T. Wijnands et al., âRadiation tolerant optical fibers: from sample testing to large series productionâ, J. Lightwave Technol. 29 (22), 3393 (2011); doi:10.1109/JLT.2011.2168512 |
| [13] | S. Girard et al., âRadiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space applicationâ, Opt. Express 20 (8), 8457 (2012); doi:10.1364/OE.20.008457 |
| [14] | B. Cadier et al., âRadiation-resistant rare-earth-doped optical fiber and method of radiation-hardening a rare-earth-doped optical fiberâ US Patent 20130101261 A1 (2013) |
| [15] | S. Girard et al., âRecent advances in radiation-hardened fiber-based technologies for space applicationsâ, J. Opt. 20, 093001 (2018); doi:10.1088/2040-8986/aad271 |
| [16] | S. Girard et al., âOverview of radiation induced point defects in silica-based optical fibersâ, Review in Physics 4, 100032 (2019); doi:10.1016/j.revip.2019.100032 |
| [17] | S. Ju et al., âEffect of temperature and gamma-ray irradiation on optical characteristics of the fiber Bragg grating inscribed radiation-resistant optical fiberâ, Photonic Sensors 10 (1), 16 (2020); doi:10.1007/s13320-019-0567-4 |
| [18] | S. Gu et al., âRadiation-induced attenuation of hollow-core photonic bandgap fiber for space applicationsâ, Infrared Physics & Technology 131, 104709 (2023); doi:10.1016/j.infrared.2023.104709 |
| [19] | J. Li et al., âRadiation damage mechanisms and research status of radiation-resistant optical fibers: a reviewâ, Sensors 24 (10), 3235 (2024); doi:10.3390/s24103235 |
| [20] | G. Xiang et al., âFully recoverable fiber lasers under radiation enabled by in-situ blue light photobleachingâ, Photon. Res. 13 (8), 2362 (2025); doi:10.1364/PRJ.560269 |
(Suggest additional literature!)
Questions and Comments from Users
Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the authorâs answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.
Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.
By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.

