Abelian and Tauberian theorems (original) (raw)
En mathématiques, et plus précisément en analyse, on appelle théorèmes abéliens et taubériens des théorèmes donnant des conditions pour que des méthodes distinctes de sommation de séries aboutissent au même résultat. Leurs noms viennent de Niels Henrik Abel et Alfred Tauber, les premiers exemples en étant le théorème d'Abel montrant que la sommation d'Abel d'une série convergente a pour valeur la somme de cette série, et le théorème de Tauber montrant que si la sommation d'Abel est possible, et que les coefficients de la série considérée sont suffisamment petits, alors la série converge (vers sa somme d'Abel).
Property | Value |
---|---|
dbo:abstract | In mathematics, Abelian and Tauberian theorems are theorems giving conditions for two methods of summing divergent series to give the same result, named after Niels Henrik Abel and Alfred Tauber. The original examples are Abel's theorem showing that if a series converges to some limit then its Abel sum is the same limit, and Tauber's theorem showing that if the Abel sum of a series exists and the coefficients are sufficiently small (o(1/n)) then the series converges to the Abel sum. More general Abelian and Tauberian theorems give similar results for more general summation methods. There is not yet a clear distinction between Abelian and Tauberian theorems, and no generally accepted definition of what these terms mean. Often, a theorem is called "Abelian" if it shows that some summation method gives the usual sum for convergent series, and is called "Tauberian" if it gives conditions for a series summable by some method that allows it to be summable in the usual sense. In the theory of integral transforms, Abelian theorems give the asymptotic behaviour of the transform based on properties of the original function. Conversely, Tauberian theorems give the asymptotic behaviour of the original function based on properties of the transform but usually require some restrictions on the original function. (en) En mathématiques, et plus précisément en analyse, on appelle théorèmes abéliens et taubériens des théorèmes donnant des conditions pour que des méthodes distinctes de sommation de séries aboutissent au même résultat. Leurs noms viennent de Niels Henrik Abel et Alfred Tauber, les premiers exemples en étant le théorème d'Abel montrant que la sommation d'Abel d'une série convergente a pour valeur la somme de cette série, et le théorème de Tauber montrant que si la sommation d'Abel est possible, et que les coefficients de la série considérée sont suffisamment petits, alors la série converge (vers sa somme d'Abel). (fr) 타우버의 정리(Tauber's theorem, -定理)는 해석학의 초등적인 정리 중 하나로, 오스트리아-헝가리 제국의 수학자 (Alfred Tauber)의 이름이 붙어 있다. 슈톨츠-체사로 정리의 부분적 역을 제공하는 정리이다. (ko) Em matemática, teoremas abeliano e tauberiano relacionam-se à atribuição de um valor significativo como a "soma" da classe de séries divergentes. Um grande número de métodos tem sido propostos para o somatório de tais séries, geralmente tomando a forma de algum funcional linear L com domínio contido em algum espaço S de sequências numéricas. Este é, primeiramente, um método útil para atribuir uma soma a uma série que não convergiria a ser linear. Secundariamente, a sequência de somas parciais das séries é considerada, a qual é uma maneira equivalente de apresentá-la. (pt) Теорема Абеля — Таубера — теорема, обратная теореме Абеля о степенных рядах. Первая теорема типа тауберовых теорем. Была доказана A. Таубером в 1897 г. (теорема Таубера) Формулировку и доказательство при более общих условиях затем дал Дж. Литтльвуд в 1910 г. Затем была доказана Р. Шмидтом, Н. Винером. Наиболее простое доказательство дал Дж. Карамата. Формулировку и доказательство при более слабом условии дал Э. Ландау. (ru) |
dbo:wikiPageID | 411990 (xsd:integer) |
dbo:wikiPageLength | 7120 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1108239380 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Cambridge_University_Press dbr:Power_series dbr:Integral_transform dbr:Limit_of_a_sequence dbr:Wiener's_Tauberian_theorem dbr:Complex_plane dbr:Continuous_function dbr:Mathematics dbr:Convergent_series dbr:Converse_(logic) dbr:Theorem dbr:Arithmetic_mean dbr:Hardy–Littlewood_Tauberian_theorem dbr:Divergent_series dbr:Corollaries dbr:Haar's_Tauberian_theorem dbr:Alfred_Tauber dbr:Abel_sum dbr:Banach_algebra dbr:Niels_Henrik_Abel dbr:Norbert_Wiener dbr:Number_theory dbr:Dirichlet_series dbr:Uniform_convergence dbr:Mathematical_proof dbc:Mathematical_series dbr:Abel's_theorem dbc:Summability_methods dbc:Summability_theory dbc:Tauberian_theorems dbr:John_Edensor_Littlewood dbr:Big_O_notation dbr:Radius_of_convergence dbr:Cesàro_mean dbr:Unit_disk dbr:Springer-Verlag |
dbp:authorlink | Alfred Tauber (en) |
dbp:first | Alfred (en) |
dbp:id | T/t092280 (en) |
dbp:last | Tauber (en) |
dbp:title | Tauberian theorems (en) |
dbp:wikiPageUsesTemplate | dbt:Springer dbt:Cite_book dbt:Clarify dbt:Reflist dbt:Harvs |
dbp:year | 1897 (xsd:integer) |
dcterms:subject | dbc:Mathematical_series dbc:Summability_methods dbc:Summability_theory dbc:Tauberian_theorems |
rdfs:comment | En mathématiques, et plus précisément en analyse, on appelle théorèmes abéliens et taubériens des théorèmes donnant des conditions pour que des méthodes distinctes de sommation de séries aboutissent au même résultat. Leurs noms viennent de Niels Henrik Abel et Alfred Tauber, les premiers exemples en étant le théorème d'Abel montrant que la sommation d'Abel d'une série convergente a pour valeur la somme de cette série, et le théorème de Tauber montrant que si la sommation d'Abel est possible, et que les coefficients de la série considérée sont suffisamment petits, alors la série converge (vers sa somme d'Abel). (fr) 타우버의 정리(Tauber's theorem, -定理)는 해석학의 초등적인 정리 중 하나로, 오스트리아-헝가리 제국의 수학자 (Alfred Tauber)의 이름이 붙어 있다. 슈톨츠-체사로 정리의 부분적 역을 제공하는 정리이다. (ko) Em matemática, teoremas abeliano e tauberiano relacionam-se à atribuição de um valor significativo como a "soma" da classe de séries divergentes. Um grande número de métodos tem sido propostos para o somatório de tais séries, geralmente tomando a forma de algum funcional linear L com domínio contido em algum espaço S de sequências numéricas. Este é, primeiramente, um método útil para atribuir uma soma a uma série que não convergiria a ser linear. Secundariamente, a sequência de somas parciais das séries é considerada, a qual é uma maneira equivalente de apresentá-la. (pt) Теорема Абеля — Таубера — теорема, обратная теореме Абеля о степенных рядах. Первая теорема типа тауберовых теорем. Была доказана A. Таубером в 1897 г. (теорема Таубера) Формулировку и доказательство при более общих условиях затем дал Дж. Литтльвуд в 1910 г. Затем была доказана Р. Шмидтом, Н. Винером. Наиболее простое доказательство дал Дж. Карамата. Формулировку и доказательство при более слабом условии дал Э. Ландау. (ru) In mathematics, Abelian and Tauberian theorems are theorems giving conditions for two methods of summing divergent series to give the same result, named after Niels Henrik Abel and Alfred Tauber. The original examples are Abel's theorem showing that if a series converges to some limit then its Abel sum is the same limit, and Tauber's theorem showing that if the Abel sum of a series exists and the coefficients are sufficiently small (o(1/n)) then the series converges to the Abel sum. More general Abelian and Tauberian theorems give similar results for more general summation methods. (en) |
rdfs:label | Abelian and Tauberian theorems (en) Théorèmes abéliens et taubériens (fr) 타우버의 정리 (ko) Teoremas abeliano e tauberiano (pt) Теорема Абеля — Таубера (ru) |
owl:sameAs | wikidata:Abelian and Tauberian theorems dbpedia-fr:Abelian and Tauberian theorems dbpedia-ko:Abelian and Tauberian theorems dbpedia-pt:Abelian and Tauberian theorems dbpedia-ru:Abelian and Tauberian theorems https://global.dbpedia.org/id/2FKwq |
prov:wasDerivedFrom | wikipedia-en:Abelian_and_Tauberian_theorems?oldid=1108239380&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Abelian_and_Tauberian_theorems |
is dbo:wikiPageDisambiguates of | dbr:Abelian |
is dbo:wikiPageRedirects of | dbr:Abelian_&_tauberian_theorems dbr:Abelian_and_tauberian_theorems dbr:Abelian_theorem dbr:Tauber's_theorem dbr:Tauberian_theorem dbr:Tauberian_theorems dbr:Abelian_Theorem |
is dbo:wikiPageWikiLink of | dbr:Prime_number_theorem dbr:Vasily_Vladimirov dbr:Abelian dbr:Abelian_&_tauberian_theorems dbr:Abelian_and_tauberian_theorems dbr:Abelian_theorem dbr:Final_value_theorem dbr:Euler_summation dbr:List_of_theorems dbr:List_of_things_named_after_Niels_Henrik_Abel dbr:Sonja_Lyttkens dbr:Tauber's_theorem dbr:Tauberian_theorem dbr:Tauberian_theorems dbr:Abelian_Theorem |
is foaf:primaryTopic of | wikipedia-en:Abelian_and_Tauberian_theorems |