dbo:abstract |
In algebraic logic, an action algebra is an algebraic structure which is both a residuated semilattice and a Kleene algebra. It adds the star or reflexive transitive closure operation of the latter to the former, while adding the left and right residuation or implication operations of the former to the latter. Unlike dynamic logic and other modal logics of programs, for which programs and propositions form two distinct sorts, action algebra combines the two into a single sort. It can be thought of as a variant of intuitionistic logic with star and with a noncommutative conjunction whose identity need not be the top element. Unlike Kleene algebras, action algebras form a variety, which furthermore is finitely axiomatizable, the crucial axiom being a•(a → a)* ≤ a. Unlike models of the equational theory of Kleene algebras (the regular expression equations), the star operation of action algebras is reflexive transitive closure in every model of the equations. (en) 在代数逻辑中,作用代数是既是剩余半格又是克莱尼代数的代数结构。它向剩余半格增加了克莱尼代数的星号或自反传递闭包运算,或者说向克莱尼代数增加了剩余半格的左和右剩余或蕴涵运算。不像程序的和其他模态逻辑,对于它们程序和命题形成了两个不同的类别,作用代数合并了二者为一个单一类别。它可被认为是变异的直觉逻辑,带有星号并带有非交换性的合取,它的单位元不需要是顶元素。不像克莱尼代数,作用代数形成了一个簇,它进一步的是可有限公理化的,至关重要的公理是 a·(a → a)* ≤ a。不像克莱尼代数的等式理论的模型(正则表达式等式),作用代数的星号运算是在所有等式的模型中自反传递闭包。 (zh) |
dbo:wikiPageID |
12415190 (xsd:integer) |
dbo:wikiPageLength |
7896 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1118908255 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Boolean_algebra_(logic) dbr:Algebraic_structure dbr:Regular_expression dbr:Dynamic_logic_(modal_logic) dbc:Algebraic_structures dbr:Algebraic_logic dbr:Formal_language dbr:Relation_algebra dbr:Heyting_algebra dbr:Finite_axiomatization dbc:Algebraic_logic dbc:Formal_languages dbr:John_Horton_Conway dbr:Boolean_algebra_(structure) dbr:Kleene_algebra dbr:Kleene_star dbr:Variety_(universal_algebra) dbr:Residuated_semilattice dbr:Action_lattice |
dbp:date |
June 2014 (en) |
dbp:reason |
These are properties of binary relations. Explain why a* can be considered as a binary relation. (en) |
dbp:wikiPageUsesTemplate |
dbt:Cite_book dbt:Clarify dbt:Reflist |
dct:subject |
dbc:Algebraic_structures dbc:Algebraic_logic dbc:Formal_languages |
gold:hypernym |
dbr:Structure |
rdf:type |
yago:Artifact100021939 yago:Object100002684 yago:PhysicalEntity100001930 yago:YagoGeoEntity yago:YagoPermanentlyLocatedEntity dbo:Building yago:Structure104341686 yago:Whole100003553 yago:WikicatAlgebraicStructures |
rdfs:comment |
在代数逻辑中,作用代数是既是剩余半格又是克莱尼代数的代数结构。它向剩余半格增加了克莱尼代数的星号或自反传递闭包运算,或者说向克莱尼代数增加了剩余半格的左和右剩余或蕴涵运算。不像程序的和其他模态逻辑,对于它们程序和命题形成了两个不同的类别,作用代数合并了二者为一个单一类别。它可被认为是变异的直觉逻辑,带有星号并带有非交换性的合取,它的单位元不需要是顶元素。不像克莱尼代数,作用代数形成了一个簇,它进一步的是可有限公理化的,至关重要的公理是 a·(a → a)* ≤ a。不像克莱尼代数的等式理论的模型(正则表达式等式),作用代数的星号运算是在所有等式的模型中自反传递闭包。 (zh) In algebraic logic, an action algebra is an algebraic structure which is both a residuated semilattice and a Kleene algebra. It adds the star or reflexive transitive closure operation of the latter to the former, while adding the left and right residuation or implication operations of the former to the latter. Unlike dynamic logic and other modal logics of programs, for which programs and propositions form two distinct sorts, action algebra combines the two into a single sort. It can be thought of as a variant of intuitionistic logic with star and with a noncommutative conjunction whose identity need not be the top element. Unlike Kleene algebras, action algebras form a variety, which furthermore is finitely axiomatizable, the crucial axiom being a•(a → a)* ≤ a. Unlike models of the equati (en) |
rdfs:label |
Action algebra (en) 作用代数 (zh) |
owl:sameAs |
freebase:Action algebra yago-res:Action algebra wikidata:Action algebra dbpedia-zh:Action algebra https://global.dbpedia.org/id/4Ki2P |
prov:wasDerivedFrom |
wikipedia-en:Action_algebra?oldid=1118908255&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Action_algebra |
is dbo:wikiPageRedirects of |
dbr:Action_logic dbr:Residuated_Kleene_algebra |
is dbo:wikiPageWikiLink of |
dbr:Kleene_algebra dbr:Residuated_lattice dbr:Action_logic dbr:Residuated_Kleene_algebra |
is foaf:primaryTopic of |
wikipedia-en:Action_algebra |