Boolean algebra (structure) (original) (raw)
- In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution). Every Boolean algebra to a Boolean ring, and vice versa, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the axioms and theorems of Boolean algebra express the symmetry of the theory described by the duality principle. (en)
- En mathématiques, une algèbre de Boole, ou parfois anneau de Boole, est une structure algébrique étudiée en particulier en logique mathématique. Une algèbre de Boole peut être définie soit comme une structure ordonnée particulière, soit comme une structure algébrique particulière, soit comme un anneau (unitaire) dont tout élément égale son carré. Pour tout ensemble, l'ensemble de ses parties est une algèbre de Boole, l'ordre associé étant l'inclusion et les lois d'anneau la différence symétrique et l'intersection. Un autre exemple est donné par l'ensemble des formules du calcul propositionnel prises à équivalence (en logique classique) près (sur un nombre de variables de cardinal arbitraire), l'ordre associé étant la relation de conséquence logique et les lois d'anneau la disjonction exclusive et la conjonction. (fr)
- Dalam aljabar abstrak, sebuah aljabar Boolean atau kekisi Boolean adalah . Jenis struktur aljabar ini menangkap sifat penting dari operasi himpunan dan operasi logika. Aljabar Boolean dapat dilihat sebagai generalisasi dari aljabar atau , atau elemennya dapat dilihat sebagai yang digeneralisasi. Ini juga merupakan kasus khusus dari dan . Setiap aljabar Boolean ke gelanggang Boolean, dan sebaliknya, dengan perkalian gelanggang yang sesuai dengan atau ∧, dan penambahan gelanggang ke atau perbedaan simetris (bukan ∨). Namun, teori gelanggang Boolean memiliki asimetri yang melekat antara dua operator, sedangkan aksioma dan teorema aljabar Boolean menyatakan simetri teori yang dijelaskan oleh . (in)
- 순서론과 추상대수학, 논리학에서 불 대수(Boole代數, 영어: Boolean algebra)는 고전 명제 논리의 명제의 격자와 같은 성질을 갖는 격자이다. 즉, 논리적 공리들을 만족시키는 논리합과 논리곱 및 부정의 연산이 정의된 대수 구조이다. (ko)
- ブール代数(ブールだいすう、英: boolean algebra)またはブール束(ブールそく、英: boolean lattice)とは、ジョージ・ブールが19世紀中頃に考案した代数系の一つである。ブール代数の研究は束の理論が築かれるひとつの契機ともなった。ブール論理の演算はブール代数の一例であり、現実の応用例としては、組み合わせ回路(論理回路)はブール代数の式で表現できる。 (ja)
- Em álgebra abstrata, a álgebra booleana ou álgebra reticulada é um reticulado distribuído complementar. Este tipo de estrutura estrutura algébrica captura propriedades essenciais das operações de conjuntos e operações lógicas. A álgebra booleana pode ser vista como uma generalização do conjunto das partes algébrico ou como um campo de conjuntos, ou seus elementos pode ser vistos como valores verdades generalizados. Ele também é um caso especial da álgebra de De Morgan e da álgebra de Kleene. Um anel booleano é, essencialmente, o mesmo que uma álgebra booleana, com o anel multiplicador correspondendo a uma conjunção ∧, e o anel somador correspondendo a uma disjunção exclusiva ou uma diferença simétrica (não disjunção ∨). (pt)
- Булевой алгеброй называется непустое множество A с двумя бинарными операциями (аналог конъюнкции), (аналог дизъюнкции), одной унарной операцией (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для любых a, b и c из множества A верны следующие аксиомы: В нотации · + ¯ Первые три аксиомы означают, что (A, , ) является решёткой. Таким образом, булева алгебра может быть определена как , в которой выполнены две последние аксиомы. Структура, в которой выполняются все аксиомы, кроме предпоследней, называется .Названа в честь Джорджа Буля. (ru)
- Бу́лева а́лгебра — це алгебраїчна структура, що є доповненою дистрибутивною ґраткою, та частина математики яка вивчає подібні структури. Алгебра логіки — застосування алгебраїчних методів і символіки для вивчення логічних відношень і розв'язання логічних задач. (uk)
- 布尔代数(英語:Boolean algebra)在抽象代数中是指捕获了集合运算和逻辑运算二者的根本性质的一个代数结构(就是说一组元素和服从定义的公理的在这些元素上运算)。特别是,它处理集合运算交集、并集、补集;和逻辑运算与、或、非。 例如,逻辑断言陈述a和它的否定¬a不能都同时为真, , 相似于集合论断言子集A和它的补集AC有空交集, 。 因为真值可以在逻辑电路中表示为二进制数或电平,这种相似性同样扩展到它们,所以布尔代数在电子工程和计算机科学中同在数理逻辑中一样有很多实践应用。在电子工程领域专门化了的布尔代数也叫做逻辑代数,在计算机科学领域专门化了布尔代数也叫做布尔逻辑。 布尔代数也叫做布尔格。关联于格(特殊的偏序集合)是在集合包含A ⊆ B和次序 a ≤ b之间的相似所预示的。考虑{x,y,z}的所有子集按照包含排序的格。这个布尔格是偏序集合,在其中{x} ≤ {x,y}。任何两个格的元素,比如p = {x,y}和q = {y,z},都有一个最小上界,这里是{x,y,z},和一个最大下界,这里是{y}。这预示了最小上界(并或上确界)被表示为同逻辑OR一样的符号p∨q;而最大下界(交或下确界)被表示为同逻辑AND一样的符号p∧q。 这种格释义有助于一般化为海廷代数,它是免除要么一个陈述要么它的否定必须为真的限制的布尔代数。海廷代数对应于直觉逻辑,而布尔代数对应于经典逻辑。 布尔代数又譯為布林代数,然而布尔代数得名于乔治·布尔,他是爱尔兰科克的皇后学院的英国数学家。布林(boolean)在英文中的意思是「布尔的」,這是為了表彰布尔的貢獻,而「布林」只是一種音譯。 (zh)
- http://www.thoralf.uwaterloo.ca/htdocs/ualg.html
- https://archive.org/details/handbookofboolea0000unse
- https://archive.org/details/logicasalgebra0000halm
- https://archive.org/details/schaumsoutlineof00mend
- https://www.ams.org/journals/tran/1933-035-01/S0002-9947-1933-1501684-X/S0002-9947-1933-1501684-X.pdf
- https://zenodo.org/record/1431563
- http://demonstrations.wolfram.com/BooleanAlgebra/
- http://www.cs.unm.edu/~mccune/papers/robbins/
- https://books.google.com/books%3Fid=0fxW2KiyxWwC&pg=PA21
- https://books.google.com/books%3Fid=JlXSlpmlSv4C&pg=PA73%23v=onepage&q&f=false
- https://books.google.com/books%3Fid=VESm0MJOiDQC&pg=PA81
- https://www.researchgate.net/publication/223327412
- http://plato.stanford.edu/entries/boolalg-math/
- http://projecteuclid.org/euclid.chmm/1263316509
- dbr:Power_of_two
- dbr:Power_set
- dbr:Prime_ideal
- dbr:Propositional_calculus
- dbr:Quantum_logic
- dbr:Quine–McCluskey_algorithm
- dbr:Bounded_lattice
- dbr:Algebra_of_sets
- dbr:Algebraic_structure
- dbr:Algebraic_system
- dbr:Homomorphism
- dbr:Hypercube_graph
- dbr:Unary_operation
- dbr:Unification_(computer_science)
- dbr:Voltage
- dbr:De_Morgan's_laws
- dbr:De_Morgan_algebra
- dbr:Double_negation
- dbr:Independence_(mathematical_logic)
- dbr:Lindenbaum–Tarski_algebra
- dbr:Commutativity
- dbr:Compact_space
- dbr:Consensus_theorem
- dbr:Consistent
- dbr:Mathematical_logic
- dbr:McGraw-Hill
- dbr:Meet_(mathematics)
- dbr:Class_(set_theory)
- dbr:Electrical_engineering
- dbr:Elsevier
- dbr:Full_subcategory
- dbr:Function_(mathematics)
- dbr:Function_composition
- dbr:Garrett_Birkhoff
- dbr:George_Boole
- dbr:Greatest_common_divisor
- dbr:Conditional_event_algebra
- dbr:Equational_prover
- dbr:Totally_disconnected
- dbr:Logic
- dbr:Logical_conjunction
- dbr:Sir_William_Hamilton,_9th_Baronet
- dbr:Stanford_Encyclopedia_of_Philosophy
- dbr:Stone's_representation_theorem_for_Boolean_algebras
- dbr:Clopen_set
- dbr:Complemented_lattice
- dbr:Complete_Boolean_algebra
- dbr:Zermelo–Fraenkel_set_theory
- dbr:Empty_set
- dbr:Fréchet_filter
- dbr:Identity_element
- dbr:Propositional_logic
- dbr:Maximal_ideal
- dbr:Augustus_De_Morgan
- dbr:Automated_theorem_proving
- dbr:Axiomatic_set_theory
- dbc:Algebraic_structures
- dbr:Central_idempotent
- dbr:Topology
- dbr:Truth_table
- dbr:Truth_value
- dbr:Tuple
- dbr:William_McCune
- dbr:Distributive_lattice
- dbr:Divisor
- dbr:Duality_(order_theory)
- dbr:Hausdorff_space
- dbr:Laws_of_Form
- dbr:List_of_Boolean_algebra_topics
- dbr:Logical_graph
- dbr:Logical_matrix
- dbr:Minimal_axioms_for_Boolean_algebra
- dbr:Alfred_North_Whitehead
- dbr:Alfred_Tarski
- dbr:Dana_Scott
- dbr:Eric_W._Weisstein
- dbr:Ernst_Schröder_(mathematician)
- dbr:Exclusive_or
- dbr:Field_of_sets
- dbr:Forcing_(mathematics)
- dbr:Oxford_University_Press
- dbr:Digital_circuit
- dbr:Duality_principle_(Boolean_algebra)
- dbr:Logical_disjunction
- dbr:Wolfram_Demonstrations_Project
- dbr:Logical_equivalence
- dbr:Logic_gate
- dbr:Ultrafilter
- dbr:Ring_(mathematics)
- dbr:2-valued_morphism
- dbc:Boolean_algebra
- dbr:A._N._Whitehead
- dbr:Herbert_Robbins
- dbr:Heyting_algebra
- dbr:Hilbert_space
- dbr:Jean-Pierre_Jouannaud
- dbr:Finitary_boolean_function
- dbr:Paul_Cohen_(mathematician)
- dbr:Ring_(algebra)
- dbr:Argonne_National_Laboratory
- dbr:Associativity
- dbr:Absorption_law
- dbr:Abstract_algebra
- dbr:Abstract_rewriting_system
- dbr:Charles_Sanders_Peirce
- dbr:Karnaugh_map
- dbr:Least_common_multiple
- dbr:Bijection
- dbr:Binary_operation
- dbr:Bit
- dbr:Supremum
- dbr:Distributivity
- dbr:Divides
- dbr:Dover_Publications
- dbr:Axiom
- dbr:Axiom_of_choice
- dbr:Marshall_H._Stone
- dbr:Boolean-valued_function
- dbr:Boolean-valued_model
- dbr:Boolean_domain
- dbr:Boolean_function
- dbr:Boolean_prime_ideal_theorem
- dbr:Boolean_ring
- dbc:Ockham_algebras
- dbr:Springer_Science+Business_Media
- dbr:Square-free_integer
- dbr:Free_Boolean_algebra
- dbr:IEEE_1364
- dbr:Ideal_(order_theory)
- dbr:Idempotence
- dbr:Identity_function
- dbr:Natural_number
- dbr:Category_theory
- dbr:Semilattice
- dbr:Set_(mathematics)
- dbr:Word_problem_(mathematics)
- dbr:Infimum
- dbr:Mathematical_Association_of_America
- dbr:Undergraduate_Texts_in_Mathematics
- dbr:Venn_diagram
- dbr:Symmetric_difference
- dbr:IEEE_1164
- dbr:Two-element_Boolean_algebra
- dbr:Partial_order
- dbr:Kleene_algebra_(with_involution)
- dbr:The_Laws_of_Thought
- dbr:Canonical_form_(Boolean_algebra)
- dbr:Transactions_of_the_American_Mathematical_Society
- dbr:Linearly_ordered
- dbr:Ring_ideal
- dbr:Boolean_logic
- dbr:Brute_force_search
- dbr:Orthocomplemented_lattice
- dbr:Marshall_Stone
- dbr:Finite–cofinite_algebra
- dbr:Edward_V._Huntington
- dbr:William_Jevons
- dbr:Springer_Verlag
- dbr:Cofinite
- dbr:De_Morgan's_Law
- dbr:Unary_functional_symbol
- dbr:Robbins_conjecture
- dbr:File:Hasse_diagram_of_powerset_of_3.svg
- dbr:File:Lattice_T_30.svg
- Boolean algebra (en)
- Boolean Algebra (en)
- dbt:Springer
- dbt:Algebraic_structures
- dbt:Citation
- dbt:Citation_needed
- dbt:Cite_book
- dbt:Cite_journal
- dbt:Clear
- dbt:Div_col
- dbt:External_links
- dbt:For_multi
- dbt:ISBN
- dbt:Main
- dbt:MathWorld
- dbt:Reflist
- dbt:Refn
- dbt:Sfn
- dbt:Short_description
- dbt:Use_dmy_dates
- dbt:Insufficient_inline_citations
- 순서론과 추상대수학, 논리학에서 불 대수(Boole代數, 영어: Boolean algebra)는 고전 명제 논리의 명제의 격자와 같은 성질을 갖는 격자이다. 즉, 논리적 공리들을 만족시키는 논리합과 논리곱 및 부정의 연산이 정의된 대수 구조이다. (ko)
- ブール代数(ブールだいすう、英: boolean algebra)またはブール束(ブールそく、英: boolean lattice)とは、ジョージ・ブールが19世紀中頃に考案した代数系の一つである。ブール代数の研究は束の理論が築かれるひとつの契機ともなった。ブール論理の演算はブール代数の一例であり、現実の応用例としては、組み合わせ回路(論理回路)はブール代数の式で表現できる。 (ja)
- Булевой алгеброй называется непустое множество A с двумя бинарными операциями (аналог конъюнкции), (аналог дизъюнкции), одной унарной операцией (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для любых a, b и c из множества A верны следующие аксиомы: В нотации · + ¯ Первые три аксиомы означают, что (A, , ) является решёткой. Таким образом, булева алгебра может быть определена как , в которой выполнены две последние аксиомы. Структура, в которой выполняются все аксиомы, кроме предпоследней, называется .Названа в честь Джорджа Буля. (ru)
- Бу́лева а́лгебра — це алгебраїчна структура, що є доповненою дистрибутивною ґраткою, та частина математики яка вивчає подібні структури. Алгебра логіки — застосування алгебраїчних методів і символіки для вивчення логічних відношень і розв'язання логічних задач. (uk)
- In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution). (en)
- Dalam aljabar abstrak, sebuah aljabar Boolean atau kekisi Boolean adalah . Jenis struktur aljabar ini menangkap sifat penting dari operasi himpunan dan operasi logika. Aljabar Boolean dapat dilihat sebagai generalisasi dari aljabar atau , atau elemennya dapat dilihat sebagai yang digeneralisasi. Ini juga merupakan kasus khusus dari dan . (in)
- En mathématiques, une algèbre de Boole, ou parfois anneau de Boole, est une structure algébrique étudiée en particulier en logique mathématique. Une algèbre de Boole peut être définie soit comme une structure ordonnée particulière, soit comme une structure algébrique particulière, soit comme un anneau (unitaire) dont tout élément égale son carré. (fr)
- Em álgebra abstrata, a álgebra booleana ou álgebra reticulada é um reticulado distribuído complementar. Este tipo de estrutura estrutura algébrica captura propriedades essenciais das operações de conjuntos e operações lógicas. A álgebra booleana pode ser vista como uma generalização do conjunto das partes algébrico ou como um campo de conjuntos, ou seus elementos pode ser vistos como valores verdades generalizados. Ele também é um caso especial da álgebra de De Morgan e da álgebra de Kleene. (pt)
- 布尔代数(英語:Boolean algebra)在抽象代数中是指捕获了集合运算和逻辑运算二者的根本性质的一个代数结构(就是说一组元素和服从定义的公理的在这些元素上运算)。特别是,它处理集合运算交集、并集、补集;和逻辑运算与、或、非。 例如,逻辑断言陈述a和它的否定¬a不能都同时为真, , 相似于集合论断言子集A和它的补集AC有空交集, 。 因为真值可以在逻辑电路中表示为二进制数或电平,这种相似性同样扩展到它们,所以布尔代数在电子工程和计算机科学中同在数理逻辑中一样有很多实践应用。在电子工程领域专门化了的布尔代数也叫做逻辑代数,在计算机科学领域专门化了布尔代数也叫做布尔逻辑。 布尔代数也叫做布尔格。关联于格(特殊的偏序集合)是在集合包含A ⊆ B和次序 a ≤ b之间的相似所预示的。考虑{x,y,z}的所有子集按照包含排序的格。这个布尔格是偏序集合,在其中{x} ≤ {x,y}。任何两个格的元素,比如p = {x,y}和q = {y,z},都有一个最小上界,这里是{x,y,z},和一个最大下界,这里是{y}。这预示了最小上界(并或上确界)被表示为同逻辑OR一样的符号p∨q;而最大下界(交或下确界)被表示为同逻辑AND一样的符号p∧q。 这种格释义有助于一般化为海廷代数,它是免除要么一个陈述要么它的否定必须为真的限制的布尔代数。海廷代数对应于直觉逻辑,而布尔代数对应于经典逻辑。 (zh)
- freebase:Boolean algebra (structure)
- yago-res:Boolean algebra (structure)
- wikidata:Boolean algebra (structure)
- http://ba.dbpedia.org/resource/Буль_алгебраһы
- http://cv.dbpedia.org/resource/Буль_алгебри
- dbpedia-fr:Boolean algebra (structure)
- dbpedia-he:Boolean algebra (structure)
- http://ht.dbpedia.org/resource/Aljèb_Boole_(estrikti)
- dbpedia-hu:Boolean algebra (structure)
- dbpedia-id:Boolean algebra (structure)
- dbpedia-ja:Boolean algebra (structure)
- dbpedia-ko:Boolean algebra (structure)
- dbpedia-pt:Boolean algebra (structure)
- dbpedia-ro:Boolean algebra (structure)
- dbpedia-ru:Boolean algebra (structure)
- dbpedia-uk:Boolean algebra (structure)
- dbpedia-zh:Boolean algebra (structure)
- https://global.dbpedia.org/id/4cbrq
is dbo:wikiPageWikiLink of
- dbr:Power_set
- dbr:Propositional_calculus
- dbr:Quantum_logic
- dbr:Roman_Sikorski
- dbr:List_of_commutative_algebra_topics
- dbr:Modal_logic
- dbr:Model_theory
- dbr:NIP_(model_theory)
- dbr:New_Foundations
- dbr:Łukasiewicz–Moisil_algebra
- dbr:MV-algebra
- dbr:Mereology
- dbr:Sheffer_stroke
- dbr:Binary_relation
- dbr:Boolean_algebras
- dbr:Boolean_homomorphism
- dbr:Boolean_lattice
- dbr:Algebra_of_sets
- dbr:Algebraic_semantics_(mathematical_logic)
- dbr:Algebraic_structure
- dbr:Allen's_interval_algebra
- dbr:Antimatroid
- dbr:Homogeneous_relation
- dbr:Hypercube_graph
- dbr:Judith_Roitman
- dbr:List_of_set_identities_and_relations
- dbr:Paul_Halmos
- dbr:Characteristica_universalis
- dbr:Cycle_space
- dbr:Cylindric_algebra
- dbr:De_Morgan_algebra
- dbr:Dedekind–MacNeille_completion
- dbr:Deductive_lambda_calculus
- dbr:Derivative_algebra_(abstract_algebra)
- dbr:Inclusion_(Boolean_algebra)
- dbr:Index_of_electrical_engineering_articles
- dbr:Index_of_logic_articles
- dbr:Interior_algebra
- dbr:Intuitionistic_logic
- dbr:Lindenbaum–Tarski_algebra
- dbr:List_of_mathematical_logic_topics
- dbr:List_of_order_theory_topics
- dbr:O-minimal_theory
- dbr:Post's_lattice
- dbr:Pseudocomplement
- dbr:Whitehead's_point-free_geometry
- dbr:*-autonomous_category
- dbr:Constantin_Carathéodory
- dbr:Mathematical_logic
- dbr:Negation
- dbr:Network_analysis_(electrical_circuits)
- dbr:Order_theory
- dbr:Order_topology
- dbr:Union-closed_sets_conjecture
- dbr:Residuated_mapping
- dbr:Quantum_Reality
- dbr:Robbins_algebra
- dbr:Topological_property
- dbr:Claude_Chevalley
- dbr:Alexandrov_topology
- dbr:GF(2)
- dbr:Galois_connection
- dbr:General_frame
- dbr:George_Boole
- dbr:Monoid
- dbr:Naive_set_theory
- dbr:Conditional_event_algebra
- dbr:Congruence_lattice_problem
- dbr:Converse_nonimplication
- dbr:Equational_prover
- dbr:Equivalence_of_categories
- dbr:Opposite_category
- dbr:Stone_algebra
- dbr:Stone's_representation_theorem_for_Boolean_algebras
- dbr:Stone_space
- dbr:Stone–Čech_compactification
- dbr:Clopen_set
- dbr:Complemented_lattice
- dbr:Complete_Boolean_algebra
- dbr:Completeness_(order_theory)
- dbr:Functional_completeness
- dbr:Identity_element
- dbr:Leon_Henkin
- dbr:Majority_function
- dbr:Suslin_algebra
- dbr:Map_of_lattices
- dbr:Measure_algebra
- dbr:A._H._Lightstone
- dbr:Action_algebra
- dbr:Topology
- dbr:Truth_value
- dbr:Distributive_lattice
- dbr:Distributive_property
- dbr:Distributivity_(order_theory)
- dbr:Duality_(order_theory)
- dbr:Gambling_mathematics
- dbr:Jónsson–Tarski_algebra
- dbr:Lattice_(order)
- dbr:Laws_of_Form
- dbr:List_of_Boolean_algebra_topics
- dbr:Representation_theorem
- dbr:Subdirectly_irreducible_algebra
- dbr:Stone_duality
- dbr:Three-valued_logic
- dbr:Algebra
- dbr:Algebraic_logic
- dbr:Duality_theory_for_distributive_lattices
- dbr:Field_of_sets
- dbr:Forcing_(mathematics)
- dbr:Formal_concept_analysis
- dbr:Fotini_Markopoulou-Kalamara
- dbr:Glossary_of_order_theory
- dbr:Goodman-Nguyen-Van_Fraassen_algebra
- dbr:History_of_topos_theory
- dbr:Isomorphism_of_categories
- dbr:Leibniz_operator
- dbr:Logical_connective
- dbr:List_of_PSPACE-complete_problems
- dbr:Ultrafilter
- dbr:Relation_algebra
- dbr:Relational_quantum_mechanics
- dbr:2-valued_morphism
- dbr:Herbert_Robbins
- dbr:Heyting_algebra
- dbr:Involution_(mathematics)
- dbr:Back-and-forth_method
- dbr:Boolean_algebra_(disambiguation)
- dbr:Covering_relation
- dbr:Abelian_group
- dbr:Absorption_law
- dbr:Abstract_algebraic_logic
- dbr:Cofiniteness
- dbr:Cohen_algebra
- dbr:Collapsing_algebra
- dbr:Heyting_arithmetic
- dbr:Modal_algebra
- dbr:Modus_ponens
- dbr:Refinement_monoid
- dbr:Discrete_Laplace_operator
- dbr:BCK_algebra
- dbr:Marshall_H._Stone
- dbr:Boolean
- dbr:Boolean-valued
- dbr:Boolean_algebra
- dbr:Boolean_algebras_canonically_defined
- dbr:Boolean_matrix
- dbr:Boolean_prime_ideal_theorem
- dbr:Boolean_ring
- dbr:Boolean_satisfiability_problem
- dbr:Square-free_integer
- dbr:Classical_logic
- dbr:Free_Boolean_algebra
- dbr:Ideal_(order_theory)
- dbr:Ideal_(set_theory)
- dbr:Algebra_(disambiguation)
- dbr:Kleene_algebra
- dbr:Cantor_algebra
- dbr:Semiring
- dbr:Martin's_axiom
- dbr:Monoidal_t-norm_logic
- dbr:Tychonoff's_theorem
- dbr:Type_(model_theory)
- dbr:Union_(set_theory)
- dbr:Nested_word
- dbr:Symmetric_difference
- dbr:Subanalytic_set
- dbr:Extremally_disconnected_space
- dbr:Image_(mathematics)
- dbr:Two-element_Boolean_algebra
- dbr:Nakamura_number
- dbr:Residuated_Boolean_algebra
- dbr:Residuated_lattice
- dbr:Stable_theory
- dbr:Monadic_Boolean_algebra
- dbr:Simple_theorems_in_the_algebra_of_sets
- dbr:Stone_functor
- dbr:Outline_of_algebraic_structures
- dbr:Outline_of_logic
- dbr:Subset
- dbr:Axiomatization_of_Boolean_algebras
- dbr:Boolean_algebra_(history)
- dbr:Boolean_hypercube
- dbr:Topological_Boolean_algebra
- dbr:Degenerate_Boolean_algebra
- dbr:Generalized_Boolean_algebra
- dbr:Generalized_Boolean_lattice
- dbr:Generalized_Boolean_semilattice