Residuated lattice (original) (raw)

About DBpedia

In abstract algebra, a residuated lattice is an algebraic structure that is simultaneously a lattice x ≤ y and a monoid x•y which admits operations x\z and z/y, loosely analogous to division or implication, when x•y is viewed as multiplication or conjunction, respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Morgan Ward and Robert P. Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebras, residuated Boolean algebras, relation algebras, and MV-algebras. Residuated semilattices omit the meet operation ∧, for example Kleene algebras and action algebras.

Property Value
dbo:abstract In abstract algebra, a residuated lattice is an algebraic structure that is simultaneously a lattice x ≤ y and a monoid x•y which admits operations x\z and z/y, loosely analogous to division or implication, when x•y is viewed as multiplication or conjunction, respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Morgan Ward and Robert P. Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebras, residuated Boolean algebras, relation algebras, and MV-algebras. Residuated semilattices omit the meet operation ∧, for example Kleene algebras and action algebras. (en) 在抽象代数中,剩余格是既为格又为幺半群的代数结构,使得幺半群乘法的每个自变量都是关于这个格次序的伽罗瓦连接的一极。它的一般概念是Ward和Dilworth在1939年介入的。某些例子先于一般概念而存在,包括布尔代数、Heyting代数、剩余布尔代数、关系代数和MV-代数。剩余半格省略了交运算∧,比如克莱尼代数和作用代数。 (zh) Ґратка з діленням — алгебраїчна структура в теорії ґраток, що одночасно є ґраткою x ≤ y та моноїдом x•y, яка дозволяє операції x\z та z/y, що є аналогами ділення чи імплікації, якщо розглядати x•y як множення чи кон'юнкцію, відповідно. Прикладами ґраток з діленням є булеві алгебри, , алгебри Гейтінга, . (uk)
dbo:wikiPageID 2483542 (xsd:integer)
dbo:wikiPageLength 12676 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1104495893 (xsd:integer)
dbo:wikiPageWikiLink dbr:MV-algebra dbr:Monus dbr:Morgan_Ward dbr:Binary_relations dbr:Algebraic_structure dbr:Peirce's_law dbc:Lattice_theory dbr:Mathematics dbr:Residuated_mapping dbr:Quantale dbr:Galois_connection dbr:Monoid dbr:Conductor_(ring_theory) dbr:Trans._Amer._Math._Soc. dbr:Annihilator_(ring_theory) dbr:Linear_logic dbr:Commutative_algebra dbr:Ideal_(ring_theory) dbr:Action_algebra dbc:Fuzzy_logic dbr:Total_order dbr:Distributive_lattice dbr:Lattice_(order) dbr:Formal_language dbr:Robert_P._Dilworth dbr:Relation_algebra dbr:Relevance_logic dbr:Ring_(mathematics) dbr:Heyting_algebra dbr:Heyting_algebras dbr:Tautology_(logic) dbr:Abstract_algebra dbc:Mathematical_logic dbc:Ordered_algebraic_structures dbr:Boolean_algebra_(structure) dbr:Kleene_algebra dbr:Variety_(universal_algebra) dbr:Natural_language dbr:Residuated_Boolean_algebra dbr:Residuated_lattice dbr:Substructural_logic
dbp:wikiPageUsesTemplate dbt:Cn dbt:Isbn dbt:Relevance-inline
dcterms:subject dbc:Lattice_theory dbc:Fuzzy_logic dbc:Mathematical_logic dbc:Ordered_algebraic_structures
gold:hypernym dbr:Structure
rdf:type yago:WikicatOrderedAlgebraicStructures yago:Artifact100021939 yago:Object100002684 yago:PhysicalEntity100001930 yago:YagoGeoEntity yago:YagoPermanentlyLocatedEntity dbo:Building yago:Structure104341686 yago:Whole100003553
rdfs:comment In abstract algebra, a residuated lattice is an algebraic structure that is simultaneously a lattice x ≤ y and a monoid x•y which admits operations x\z and z/y, loosely analogous to division or implication, when x•y is viewed as multiplication or conjunction, respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Morgan Ward and Robert P. Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebras, residuated Boolean algebras, relation algebras, and MV-algebras. Residuated semilattices omit the meet operation ∧, for example Kleene algebras and action algebras. (en) 在抽象代数中,剩余格是既为格又为幺半群的代数结构,使得幺半群乘法的每个自变量都是关于这个格次序的伽罗瓦连接的一极。它的一般概念是Ward和Dilworth在1939年介入的。某些例子先于一般概念而存在,包括布尔代数、Heyting代数、剩余布尔代数、关系代数和MV-代数。剩余半格省略了交运算∧,比如克莱尼代数和作用代数。 (zh) Ґратка з діленням — алгебраїчна структура в теорії ґраток, що одночасно є ґраткою x ≤ y та моноїдом x•y, яка дозволяє операції x\z та z/y, що є аналогами ділення чи імплікації, якщо розглядати x•y як множення чи кон'юнкцію, відповідно. Прикладами ґраток з діленням є булеві алгебри, , алгебри Гейтінга, . (uk)
rdfs:label Residuated lattice (en) Ґратка з діленням (uk) 剩余格 (zh)
owl:sameAs freebase:Residuated lattice yago-res:Residuated lattice wikidata:Residuated lattice dbpedia-uk:Residuated lattice dbpedia-zh:Residuated lattice https://global.dbpedia.org/id/56F1J
prov:wasDerivedFrom wikipedia-en:Residuated_lattice?oldid=1104495893&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Residuated_lattice
is dbo:wikiPageRedirects of dbr:Residuated_semilattice
is dbo:wikiPageWikiLink of dbr:MV-algebra dbr:Morgan_Ward dbr:Dedekind–MacNeille_completion dbr:Residuated_mapping dbr:Quantale dbr:Idealizer dbr:Map_of_lattices dbr:Fuzzy_logic dbr:T-norm dbr:Relevance_logic dbr:Residual dbr:Heyting_algebra dbr:BL_(logic) dbr:Bunched_logic dbr:Monoidal_t-norm_logic dbr:Residuated_Boolean_algebra dbr:Residuated_lattice dbr:Multi-adjoint_logic_programming dbr:T-norm_fuzzy_logics dbr:Substructural_logic dbr:Residuated_semilattice
is foaf:primaryTopic of wikipedia-en:Residuated_lattice