Algebra representation (original) (raw)

Property Value
dbo:abstract In abstract algebra, a representation of an associative algebra is a module for that algebra. Here an associative algebra is a (not necessarily unital) ring. If the algebra is not unital, it may be made so in a standard way (see the adjoint functors page); there is no essential difference between modules for the resulting unital ring, in which the identity acts by the identity mapping, and representations of the algebra. (en) Die Darstellungstheorie von Algebren ist ein Teilgebiet der Mathematik, das sich mit der Darstellung von Algebren auf Vektorräumen beschäftigt. Auf diese Weise werden beliebige assoziative Algebren mittels Homomorphismen mit Algebren von Operatoren in Zusammenhang gebracht. Untersuchungsgegenstand sind die Struktur solcher Homomorphismen und deren Klassifikation. Die Darstellungstheorie einer Algebra ist zur Theorie ihrer Moduln äquivalent. Speziellere Darstellungstheorien behandeln Gruppen, Lie-Algebren oder C*-Algebren. Wir betrachten im Folgenden der Einfachheit halber Algebren mit Einselement 1. Hat man eine Algebra ohne Einselement, so adjungiere man eines. (de) 抽象代数学において,結合多元環の表現はその環の加群である.ここで結合多元環は(単位的とは限らない)環である.多元環が単位的でないとき,標準的な方法で単位的にでき(随伴関手のページを参照),得られる単位的環(単位元は恒等写像として作用する)の加群と多元環の表現の間に本質的な違いは存在しない. (ja) Em matemática, uma representação de uma álgebra é um módulo sobre a álgebra ou, equivalentemente, um homomorfismo de álgebras entre a álgebra e o de um espaço vetorial. (pt)
dbo:wikiPageID 854978 (xsd:integer)
dbo:wikiPageLength 7483 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1031207895 (xsd:integer)
dbo:wikiPageWikiLink dbr:Module_(mathematics) dbr:Representation_theory dbr:Algebra_homomorphism dbr:Algebraically_closed_field dbc:Module_theory dbr:Characteristic_polynomial dbr:Unital_algebra dbr:Vector_space dbr:Lie_algebra_representation dbc:Algebras dbr:Complex_number dbr:Matrix_(mathematics) dbr:Eigenvalue dbr:Eigenvalues_and_eigenvectors dbr:Linear_operator dbr:Commutative_algebra dbr:Commutative_ring dbr:Identity_matrix dbr:Structure_theorem_for_finitely_generated_modules_over_a_principal_ideal_domain dbr:Adjoint_functors dbr:Linear_complex_structure dbr:Algebraic_geometry dbr:Algebraic_variety dbr:Field_(mathematics) dbr:Dimension_(vector_space) dbr:Linear_functional dbr:Ring_(mathematics) dbr:Jacobson_density_theorem dbr:Abstract_algebra dbc:Representation_theory dbr:Bilinear_map dbr:Weight_(representation_theory) dbr:Associative_algebra dbr:Schur’s_lemma dbr:Real_number dbr:Image_(mathematics) dbr:Triangular_matrix dbr:Noncommutative_geometry dbr:Representation_theory_of_Hopf_algebras dbr:Intertwiner dbr:Jordan_canonical_form dbr:Simultaneous_eigenvector dbr:Double_commutant_theorem dbr:Polynomial_algebra dbr:Representation_theory_of_Lie_algebras
dbp:wikiPageUsesTemplate dbt:Distinguish dbt:ISBN dbt:Main dbt:Math dbt:Mvar dbt:Refbegin dbt:Refend dbt:Reflist
dct:subject dbc:Module_theory dbc:Algebras dbc:Representation_theory
gold:hypernym dbr:Module
rdf:type owl:Thing dbo:Software yago:Abstraction100002137 yago:Algebra106012726 yago:Cognition100023271 yago:Content105809192 yago:Discipline105996646 yago:KnowledgeDomain105999266 yago:Mathematics106000644 yago:PsychologicalFeature100023100 yago:PureMathematics106003682 yago:Science105999797 yago:WikicatAlgebras
rdfs:comment In abstract algebra, a representation of an associative algebra is a module for that algebra. Here an associative algebra is a (not necessarily unital) ring. If the algebra is not unital, it may be made so in a standard way (see the adjoint functors page); there is no essential difference between modules for the resulting unital ring, in which the identity acts by the identity mapping, and representations of the algebra. (en) 抽象代数学において,結合多元環の表現はその環の加群である.ここで結合多元環は(単位的とは限らない)環である.多元環が単位的でないとき,標準的な方法で単位的にでき(随伴関手のページを参照),得られる単位的環(単位元は恒等写像として作用する)の加群と多元環の表現の間に本質的な違いは存在しない. (ja) Em matemática, uma representação de uma álgebra é um módulo sobre a álgebra ou, equivalentemente, um homomorfismo de álgebras entre a álgebra e o de um espaço vetorial. (pt) Die Darstellungstheorie von Algebren ist ein Teilgebiet der Mathematik, das sich mit der Darstellung von Algebren auf Vektorräumen beschäftigt. Auf diese Weise werden beliebige assoziative Algebren mittels Homomorphismen mit Algebren von Operatoren in Zusammenhang gebracht. Untersuchungsgegenstand sind die Struktur solcher Homomorphismen und deren Klassifikation. Die Darstellungstheorie einer Algebra ist zur Theorie ihrer Moduln äquivalent. Speziellere Darstellungstheorien behandeln Gruppen, Lie-Algebren oder C*-Algebren. (de)
rdfs:label Darstellung (Algebra) (de) Algebra representation (en) 多元環の表現 (ja) Representação de uma álgebra (pt)
owl:differentFrom dbr:Algebraic_representation
owl:sameAs freebase:Algebra representation yago-res:Algebra representation wikidata:Algebra representation dbpedia-de:Algebra representation dbpedia-fa:Algebra representation dbpedia-ja:Algebra representation dbpedia-pt:Algebra representation https://global.dbpedia.org/id/4NQnB
prov:wasDerivedFrom wikipedia-en:Algebra_representation?oldid=1031207895&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Algebra_representation
is dbo:wikiPageRedirects of dbr:Representation_of_an_algebra dbr:Representation_of_an_associative_algebra dbr:Representation_theory_of_algebras
is dbo:wikiPageWikiLink of dbr:List_of_abstract_algebra_topics dbr:Algebraic_signal_processing dbr:List_of_representation_theory_topics dbr:Eigenvalues_and_eigenvectors dbr:Linear_complex_structure dbr:Trivial_representation dbr:Basil_Hiley dbr:Universal_enveloping_algebra dbr:Ring_(mathematics) dbr:Weight_(representation_theory) dbr:Change_of_rings dbr:Implicate_and_explicate_order dbr:Triangular_matrix dbr:N_=_4_supersymmetric_Yang–Mills_theory dbr:Vera_Serganova dbr:Representation_on_coordinate_rings dbr:Representation_theory_of_Hopf_algebras dbr:Representation_of_an_algebra dbr:Representation_of_an_associative_algebra dbr:Representation_theory_of_algebras
is owl:differentFrom of dbr:Algebraic_representation
is foaf:primaryTopic of wikipedia-en:Algebra_representation