Banzhaf power index (original) (raw)

About DBpedia

Indeks siły Banzhafa – jeden z dwóch najważniejszych indeksów siły (obok indeksu siły Shapleya-Shubika). Indeks oblicza się dla każdego potencjalnego koalicjanta i przedstawia się w postaci ułamka zwykłego lub dziesiętnego. Jest to odsetek koalicji wygrywających, w których dany koalicjant ma decydującą rolę, tzn. po jego wycofaniu się z koalicji nie miałaby ona większości.

thumbnail

Property Value
dbo:abstract The Banzhaf power index, named after John F. Banzhaf III (originally invented by Lionel Penrose in 1946 and sometimes called Penrose–Banzhaf index; also known as the Banzhaf–Coleman index after James Samuel Coleman), is a power index defined by the probability of changing an outcome of a vote where voting rights are not necessarily equally divided among the voters or shareholders. To calculate the power of a voter using the Banzhaf index, list all the winning coalitions, then count the critical voters. A critical voter is a voter who, if he changed his vote from yes to no, would cause the measure to fail. A voter's power is measured as the fraction of all swing votes that he could cast. There are some algorithms for calculating the power index, e.g., dynamic programming techniques, enumeration methods and Monte Carlo methods. (en) El índice de poder de Banzhaf , nombrado en honor a John F. Banzhaf III (originalmente inventado por Lionel Penrose en 1946 y llamado a veces índice Penrose–Banzhaf; también conocido como el índice Banzhaf–Coleman en honor a James Samuel Coleman), es un índice de poder definido por la probabilidad de cambiar el resultado de una votación en la que la cantidad de votos no está dividida en partes iguales entre los votantes o accionistas. Para calcular el poder de un votante usando el índice de Banzhaf , se listan todas las coaliciones ganadoras, luego se cuentan los votantes críticos. Un votante crítico es un votante que, si cambia su voto, causaría que la coalición pierda. El poder de un votante está medido como la fracción de todos votos que cambien resultados que él pueda lanzar. Hay algunos algoritmos para calcular el índice de poder, p. ej., técnicas de programación dinámica, métodos de enumeración y métodos Monte Carlo (Matsui & Matsui 2000). (es) Banzhaf-en botere adierazlea talde batek botu bidez hartzen diren erabakitzeko egoeretan erabiltzen den botere adierazlea da da. Politikan erabili ohi da adierazle hau, talde politikoen indarra bere mende dituzten botu kopuruek baino hobeto adierazten baitu. Banzhaf-en adierazlea kalkulatzeko, koalizio irabazle guztien zerrenda eman behar da eta hauetako bakoitzean erabakior diren talde guztiak ezartzen dira. Koalizio irabazle batean, talde erabakiorrak bere boturik gabe koalizioa irabazle suertatuko ez litzatekeela eragiten dutenak dira. Talde bati dagokion Banzhaf-en adierazlea, koalizio irabazle guztietan talde guztiak erabakiorrak diren aldi guztietatik, taldea erabakiorra den aldi kopuru erlatiboa da. (eu) L’indice de pouvoir de Banzhaf, nommé d'après John F. Banzhaf III, bien qu'à l'origine inventé par Penrose et parfois appelé indice de Penrose-Banzhaf, est un indice de pouvoir défini par la probabilité du changement des résultats d'un scrutin où les droits de vote ne sont pas nécessairement partagés également entre les électeurs. Pour calculer le pouvoir d'un électeur en utilisant l'indice de Banzhaf, il faut recenser toutes les coalitions gagnantes, puis compter les électeurs critiques : un électeur critique est un électeur qui, s'il a changé son vote de oui en non, entraînerait le rejet de la proposition soumise au vote. Le pouvoir d'un électeur est défini comme la fraction de tous les votes critiques qu'il pouvait exprimer. L'indice est également connu sous le nom d’indice de Banzhaf-Coleman. (fr) Indeks siły Banzhafa – jeden z dwóch najważniejszych indeksów siły (obok indeksu siły Shapleya-Shubika). Indeks oblicza się dla każdego potencjalnego koalicjanta i przedstawia się w postaci ułamka zwykłego lub dziesiętnego. Jest to odsetek koalicji wygrywających, w których dany koalicjant ma decydującą rolę, tzn. po jego wycofaniu się z koalicji nie miałaby ona większości. (pl) Banzhaf權力指標是一種用以衡量投票者在一次投票中影響投票結果的程度。這類投票的例子有公司股東投票。 若在一個選票組合之中,只要某一個投票人改變其決定,投票結果便會逆轉,則稱該投票人在那個組合是關鍵性的。要計算一個投票者的權力指標,首先列出所有投票結果為正的組合,然後求出目標投票人在哪些組合是關鍵性的,稱這數目為a。也求出所有組合中關鍵性的投票者的總數r。a/r便是該投票人的Banzhaf指標。 (zh)
dbo:thumbnail wiki-commons:Special:FilePath/BanzhafPowerIndex.jpg?width=300
dbo:wikiPageExternalLink http://code.grnet.gr/projects/voting-power/wiki/Wiki/ http://www.math.tau.ac.il/~lehrer/Papers/axiomatization%20Banzhaf.pdf http://www.orsj.or.jp/~archive/pdf/e_mag/Vol.43_01_071.pdf http://eprints.lse.ac.uk/423/1/PSRms.pdf https://github.com/frankhuettner/powerindices http://demonstrations.wolfram.com/BanzhafPowerIndex/ https://ideas.repec.org/a/fau/aucocz/au2012_107.html http://www.cs.unc.edu/~livingst/Banzhaf/ http://www.warwick.ac.uk/~ecaae/ https://web.archive.org/web/20110719105103/http:/korsika.informatik.uni-kiel.de/~stb/power_indices/index.php https://web.archive.org/web/20151121073351/http:/hpcgi2.nifty.com/TOMOMI/index-e.cgi
dbo:wikiPageID 2529101 (xsd:integer)
dbo:wikiPageInterLanguageLink dbpedia-de:Machtindex
dbo:wikiPageLength 14864 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1088457876 (xsd:integer)
dbo:wikiPageWikiLink dbr:California dbr:Python_(programming_language) dbr:Democratic_Party_(United_States) dbc:Game_theory dbr:Republican_Party_(United_States) dbr:United_States_presidential_election dbr:Penrose_method dbr:Penrose_square_root_law dbr:Council_of_the_European_Union dbr:Outcome_(game_theory) dbr:Game_theory dbr:Monopoly dbr:Montana dbr:Monte_Carlo_method dbr:Lionel_Penrose dbr:Voting dbc:Political_science_theories dbc:Cooperative_games dbr:Dynamic_programming dbr:Wolfram_Demonstrations_Project dbr:Electoral_College_(United_States) dbr:Power_(social_and_political) dbr:Probability dbr:James_Samuel_Coleman dbr:Texas dbr:Majority_vote dbc:Voting_theory dbr:Nassau_County,_New_York dbr:New_York_(state) dbr:R_(programming_language) dbr:Shapley–Shubik_power_index dbr:Shapley_value dbr:John_F._Banzhaf_III dbr:Shareholder dbr:Electoral_vote dbr:File:BanzhafPowerIndex.jpg
dbp:wikiPageUsesTemplate dbt:! dbt:Cite_book dbt:Cite_journal dbt:Efn dbt:External_links dbt:More_footnotes dbt:Multiple_issues dbt:Notelist dbt:Other_uses dbt:Page_numbers_needed dbt:Portal dbt:Refbegin dbt:Refend dbt:Reflist dbt:Sfn dbt:Use_dmy_dates dbt:When dbt:Use_Oxford_spelling
dct:subject dbc:Game_theory dbc:Political_science_theories dbc:Cooperative_games dbc:Voting_theory
gold:hypernym dbr:Index
rdf:type dbo:Work yago:WikicatCooperativeGames yago:Abstraction100002137 yago:Cognition100023271 yago:Contest107456188 yago:Event100029378 yago:Explanation105793000 yago:Game100456199 yago:HigherCognitiveProcess105770664 yago:Process105701363 yago:PsychologicalFeature100023100 yago:YagoPermanentlyLocatedEntity yago:SocialEvent107288639 yago:Theory105989479 yago:Thinking105770926 yago:WikicatPoliticalScienceTheories
rdfs:comment Indeks siły Banzhafa – jeden z dwóch najważniejszych indeksów siły (obok indeksu siły Shapleya-Shubika). Indeks oblicza się dla każdego potencjalnego koalicjanta i przedstawia się w postaci ułamka zwykłego lub dziesiętnego. Jest to odsetek koalicji wygrywających, w których dany koalicjant ma decydującą rolę, tzn. po jego wycofaniu się z koalicji nie miałaby ona większości. (pl) Banzhaf權力指標是一種用以衡量投票者在一次投票中影響投票結果的程度。這類投票的例子有公司股東投票。 若在一個選票組合之中,只要某一個投票人改變其決定,投票結果便會逆轉,則稱該投票人在那個組合是關鍵性的。要計算一個投票者的權力指標,首先列出所有投票結果為正的組合,然後求出目標投票人在哪些組合是關鍵性的,稱這數目為a。也求出所有組合中關鍵性的投票者的總數r。a/r便是該投票人的Banzhaf指標。 (zh) The Banzhaf power index, named after John F. Banzhaf III (originally invented by Lionel Penrose in 1946 and sometimes called Penrose–Banzhaf index; also known as the Banzhaf–Coleman index after James Samuel Coleman), is a power index defined by the probability of changing an outcome of a vote where voting rights are not necessarily equally divided among the voters or shareholders. (en) El índice de poder de Banzhaf , nombrado en honor a John F. Banzhaf III (originalmente inventado por Lionel Penrose en 1946 y llamado a veces índice Penrose–Banzhaf; también conocido como el índice Banzhaf–Coleman en honor a James Samuel Coleman), es un índice de poder definido por la probabilidad de cambiar el resultado de una votación en la que la cantidad de votos no está dividida en partes iguales entre los votantes o accionistas. (es) Banzhaf-en botere adierazlea talde batek botu bidez hartzen diren erabakitzeko egoeretan erabiltzen den botere adierazlea da da. Politikan erabili ohi da adierazle hau, talde politikoen indarra bere mende dituzten botu kopuruek baino hobeto adierazten baitu. (eu) L’indice de pouvoir de Banzhaf, nommé d'après John F. Banzhaf III, bien qu'à l'origine inventé par Penrose et parfois appelé indice de Penrose-Banzhaf, est un indice de pouvoir défini par la probabilité du changement des résultats d'un scrutin où les droits de vote ne sont pas nécessairement partagés également entre les électeurs. L'indice est également connu sous le nom d’indice de Banzhaf-Coleman. (fr)
rdfs:label Índice de poder de Banzhaf (es) Banzhaf power index (en) Banzhaf-en adierazle (eu) Indice de pouvoir de Banzhaf (fr) Indeks siły Banzhafa (pl) 班茨哈夫权力指标 (zh)
owl:sameAs freebase:Banzhaf power index yago-res:Banzhaf power index wikidata:Banzhaf power index dbpedia-es:Banzhaf power index dbpedia-eu:Banzhaf power index dbpedia-fa:Banzhaf power index dbpedia-fr:Banzhaf power index dbpedia-he:Banzhaf power index dbpedia-pl:Banzhaf power index dbpedia-zh:Banzhaf power index https://global.dbpedia.org/id/2YjxE
prov:wasDerivedFrom wikipedia-en:Banzhaf_power_index?oldid=1088457876&ns=0
foaf:depiction wiki-commons:Special:FilePath/BanzhafPowerIndex.jpg
foaf:isPrimaryTopicOf wikipedia-en:Banzhaf_power_index
is dbo:knownFor of dbr:Lionel_Penrose
is dbo:wikiPageRedirects of dbr:Banzhaf_Power_Index dbr:Banzhaf-Coleman_index dbr:Banzhaf_index dbr:Banzhaf–Coleman_index dbr:Penrose-Banzhaf-Coleman_index dbr:Penrose-Banzhaf_index dbr:Penrose–Banzhaf_index dbr:Penrose–Banzhaf–Coleman_index
is dbo:wikiPageWikiLink of dbr:Entitlement_(fair_division) dbr:United_States_Electoral_College dbr:Penrose_square_root_law dbr:Weighted_voting dbr:Electoral_threshold dbr:George_Washington_University_Law_School dbr:Lionel_Penrose dbr:Authority_distribution dbr:Banzhaf_Power_Index dbr:Nassau_County_Legislature dbr:Shapley–Shubik_power_index dbr:Shapley_value dbr:Voting_in_the_Council_of_the_European_Union dbr:Power_index dbr:Banzhaf-Coleman_index dbr:Banzhaf_index dbr:Banzhaf–Coleman_index dbr:Penrose-Banzhaf-Coleman_index dbr:Penrose-Banzhaf_index dbr:Penrose–Banzhaf_index dbr:Penrose–Banzhaf–Coleman_index
is dbp:knownFor of dbr:Lionel_Penrose
is foaf:primaryTopic of wikipedia-en:Banzhaf_power_index