Exp algebra (original) (raw)

Property Value
dbo:abstract In mathematics, an exp algebra is a Hopf algebra Exp(G) constructed from an abelian group G, and is the universal ring R such that there is an exponential map from G to the group of the power series in R[[t]] with constant term 1. In other words the functor Exp from abelian groups to commutative rings is adjoint to the functor from commutative rings to abelian groups taking a ring to the group of formal power series with constant term 1. The definition of the exp ring of G is similar to that of the group ring Z[G] of G, which is the universal ring such that there is an exponential homomorphism from the group to its units. In particular there is a natural homomorphism from the group ring to a completion of the exp ring. However in general the Exp ring can be much larger than the group ring: for example, the group ring of the integers is the ring of Laurent polynomials in 1 variable, while the exp ring is a polynomial ring in countably many generators. (en)
dbo:wikiPageID 42475707 (xsd:integer)
dbo:wikiPageLength 3506 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1115805271 (xsd:integer)
dbo:wikiPageWikiLink dbr:Ring_of_symmetric_functions dbr:Coproduct dbr:Commutative_ring dbr:Hopf_algebra dbr:Λ-ring dbr:Laurent_polynomial dbr:Formal_power_series dbr:Ring_(mathematics) dbr:Abelian_group dbc:Hopf_algebras dbr:Group_ring dbr:Universal_property dbr:Hopf_algebra_of_symmetric_functions
dbp:first Nadiya (en) Michiel (en) V. V. (en)
dbp:isbn 978 (xsd:integer)
dbp:last Kirichenko (en) Hazewinkel (en) Gubareni (en)
dbp:mr 2724822 (xsd:integer)
dbp:place Providence, RI (en)
dbp:publisher American Mathematical Society (en)
dbp:series Mathematical Surveys and Monographs (en)
dbp:title Algebras, rings and modules. Lie algebras and Hopf algebras (en)
dbp:volume 168 (xsd:integer)
dbp:wikiPageUsesTemplate dbt:Citation dbt:Harvtxt dbt:Harvs
dbp:year 2010 (xsd:integer)
dbp:zbl 1211.160230 (xsd:double)
dct:subject dbc:Hopf_algebras
gold:hypernym dbr:Exp
rdf:type yago:Abstraction100002137 yago:Algebra106012726 yago:Cognition100023271 yago:Content105809192 yago:Discipline105996646 yago:KnowledgeDomain105999266 yago:Mathematics106000644 yago:PsychologicalFeature100023100 yago:PureMathematics106003682 yago:WikicatHopfAlgebras yago:Science105999797
rdfs:comment In mathematics, an exp algebra is a Hopf algebra Exp(G) constructed from an abelian group G, and is the universal ring R such that there is an exponential map from G to the group of the power series in R[[t]] with constant term 1. In other words the functor Exp from abelian groups to commutative rings is adjoint to the functor from commutative rings to abelian groups taking a ring to the group of formal power series with constant term 1. (en)
rdfs:label Exp algebra (en)
owl:sameAs freebase:Exp algebra yago-res:Exp algebra wikidata:Exp algebra https://global.dbpedia.org/id/faLz
prov:wasDerivedFrom wikipedia-en:Exp_algebra?oldid=1115805271&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Exp_algebra
is dbo:wikiPageRedirects of dbr:Exp_ring
is dbo:wikiPageWikiLink of dbr:Exp_ring
is foaf:primaryTopic of wikipedia-en:Exp_algebra