Favard's theorem (original) (raw)

About DBpedia

In mathematics, Favard's theorem, also called the Shohat–Favard theorem, states that a sequence of polynomials satisfying a suitable 3-term recurrence relation is a sequence of orthogonal polynomials. The theorem was introduced in the theory of orthogonal polynomials by Favard and , though essentially the same theorem was used by Stieltjes in the theory of continued fractions many years before Favard's paper, and was rediscovered several times by other authors before Favard's work.

Property Value
dbo:abstract In mathematics, Favard's theorem, also called the Shohat–Favard theorem, states that a sequence of polynomials satisfying a suitable 3-term recurrence relation is a sequence of orthogonal polynomials. The theorem was introduced in the theory of orthogonal polynomials by Favard and , though essentially the same theorem was used by Stieltjes in the theory of continued fractions many years before Favard's paper, and was rediscovered several times by other authors before Favard's work. (en) En mathématiques, le théorème de Favard, aussi appelé théorème de Shohat–Favard, d'après Jean Favard et (en), affirme qu'une suite de polynômes satisfaisant une certaine relation de récurrence à trois termes est une suite de polynômes orthogonaux. (fr)
dbo:wikiPageExternalLink https://books.google.com/books%3Fid=IkCJSQAACAAJ https://gallica.bnf.fr/ark:/12148/bpt6k3152t/f2052.item
dbo:wikiPageID 32659088 (xsd:integer)
dbo:wikiPageLength 3133 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1009054933 (xsd:integer)
dbo:wikiPageWikiLink dbc:Theorems_in_approximation_theory dbr:Jacobi_operator dbr:Continued_fraction dbr:Thomas_Joannes_Stieltjes dbr:Oxford_University_Press dbr:Recurrence_relation dbc:Orthogonal_polynomials dbr:Orthogonal_polynomials
dbp:b n (en) n–1 (en)
dbp:first Yu. N. (en)
dbp:id f/f038300 (en)
dbp:last Subbotin (en)
dbp:p 2 (xsd:integer)
dbp:title Favard theorem (en)
dbp:wikiPageUsesTemplate dbt:Citation dbt:Harvtxt dbt:ISBN dbt:Su dbt:Harvs dbt:Eom
dct:subject dbc:Theorems_in_approximation_theory dbc:Orthogonal_polynomials
gold:hypernym dbr:Sequence
rdf:type yago:WikicatTheoremsInApproximationTheory yago:WikicatOrthogonalPolynomials yago:Abstraction100002137 yago:Communication100033020 yago:Function113783816 yago:MathematicalRelation113783581 yago:Message106598915 yago:Polynomial105861855 yago:Proposition106750804 yago:Relation100031921 yago:Statement106722453 yago:Theorem106752293
rdfs:comment In mathematics, Favard's theorem, also called the Shohat–Favard theorem, states that a sequence of polynomials satisfying a suitable 3-term recurrence relation is a sequence of orthogonal polynomials. The theorem was introduced in the theory of orthogonal polynomials by Favard and , though essentially the same theorem was used by Stieltjes in the theory of continued fractions many years before Favard's paper, and was rediscovered several times by other authors before Favard's work. (en) En mathématiques, le théorème de Favard, aussi appelé théorème de Shohat–Favard, d'après Jean Favard et (en), affirme qu'une suite de polynômes satisfaisant une certaine relation de récurrence à trois termes est une suite de polynômes orthogonaux. (fr)
rdfs:label Favard's theorem (en) Théorème de Favard (fr)
owl:sameAs freebase:Favard's theorem yago-res:Favard's theorem wikidata:Favard's theorem dbpedia-fr:Favard's theorem https://global.dbpedia.org/id/4jXRN
prov:wasDerivedFrom wikipedia-en:Favard's_theorem?oldid=1009054933&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Favard's_theorem
is dbo:wikiPageRedirects of dbr:Favard-Shohat_theorem dbr:Favard_theorem dbr:Favard–Shohat_theorem dbr:Shohat's_theorem dbr:Shohat-Favard_theorem dbr:Shohat_theorem dbr:Shohat–Favard_theorem
is dbo:wikiPageWikiLink of dbr:List_of_numerical_analysis_topics dbr:List_of_polynomial_topics dbr:Orthogonal_polynomials dbr:Szegő_polynomial dbr:Favard-Shohat_theorem dbr:Favard_theorem dbr:Favard–Shohat_theorem dbr:Shohat's_theorem dbr:Shohat-Favard_theorem dbr:Shohat_theorem dbr:Shohat–Favard_theorem
is foaf:primaryTopic of wikipedia-en:Favard's_theorem