Haboush's theorem (original) (raw)
In mathematics Haboush's theorem, often still referred to as the Mumford conjecture, states that for any semisimple algebraic group G over a field K, and for any linear representation ρ of G on a K-vector space V, given v ≠ 0 in V that is fixed by the action of G, there is a G-invariant polynomial F on V, without constant term, such that F(v) ≠ 0.
Property | Value |
---|---|
dbo:abstract | In mathematics Haboush's theorem, often still referred to as the Mumford conjecture, states that for any semisimple algebraic group G over a field K, and for any linear representation ρ of G on a K-vector space V, given v ≠ 0 in V that is fixed by the action of G, there is a G-invariant polynomial F on V, without constant term, such that F(v) ≠ 0. The polynomial can be taken to be homogeneous, in other words an element of a symmetric power of the dual of V, and if the characteristic is p>0 the degree of the polynomial can be taken to be a power of p.When K has characteristic 0 this was well known; in fact Weyl's theorem on the complete reducibility of the representations of G implies that F can even be taken to be linear. Mumford's conjecture about the extension to prime characteristic p was proved by W. J. , about a decade after the problem had been posed by David Mumford, in the introduction to the first edition of his book Geometric Invariant Theory. (en) Le théorème de Haboush est un théorème par lequel William Haboush a démontré une conjecture de Mumford, établissant que pour tout groupe algébrique réductif G sur un corps k, pour toute représentation de G sur un k-espace vectoriel V, et pour tout vecteur non nul v dans V fixe par l'action de G, il existe sur V un polynôme G-invariant F tel que F(v) ≠ 0 et F(0) = 0. Le polynôme peut être choisi homogène, c'est-à-dire élément d'une puissance symétrique du dual de V, et si la caractéristique de k est un nombre premier p > 0, le degré du polynôme peut être choisi égal à une puissance de p. Pour k de caractéristique nulle, ce résultat était bien connu : dans ce cas, (en) de Weyl sur la complète réductibilité des représentations de G garantit même que F peut être choisi linéaire. L'extension aux caractéristiques p > 0, conjecturée dans l'introduction de a été démontrée par . (fr) |
dbo:wikiPageExternalLink | http://projecteuclid.org/euclid.kjm/1250524787 http://www.numdam.org/item/SB_1974-1975__17__138_0/ |
dbo:wikiPageID | 632762 (xsd:integer) |
dbo:wikiPageLength | 8166 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1051891084 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:David_Mumford dbc:Representation_theory_of_algebraic_groups dbr:Vector_space dbr:Mathematics dbr:Geometric_invariant_theory dbc:Invariant_theory dbr:Ergebnisse_der_Mathematik_und_ihrer_Grenzgebiete dbr:Steinberg_representation dbr:Line_bundle dbr:Semisimple_algebraic_group dbr:Field_(mathematics) dbc:Conjectures_that_have_been_proved dbr:Advances_in_Mathematics dbr:Homogeneous_polynomial dbr:Weyl's_theorem_on_complete_reducibility dbr:Borel_subgroup dbc:Theorems_in_representation_theory dbr:Polynomial dbr:Algebraically_closed dbr:Weyl_character_formula dbr:G-invariant dbr:Very_ample |
dbp:authorlink | Vladimir L. Popov (en) |
dbp:first | V.L. (en) |
dbp:id | M/m065570 (en) |
dbp:last | Popov (en) |
dbp:title | Mumford hypothesis (en) |
dbp:wikiPageUsesTemplate | dbt:Springer dbt:Citation dbt:Cite_journal dbt:Harvtxt dbt:ISBN dbt:Short_description dbt:MathSciNet |
dct:subject | dbc:Representation_theory_of_algebraic_groups dbc:Invariant_theory dbc:Conjectures_that_have_been_proved dbc:Theorems_in_representation_theory |
gold:hypernym | dbr:F |
rdf:type | yago:WikicatTheoremsInRepresentationTheory yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 dbo:MotorsportSeason yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment | In mathematics Haboush's theorem, often still referred to as the Mumford conjecture, states that for any semisimple algebraic group G over a field K, and for any linear representation ρ of G on a K-vector space V, given v ≠ 0 in V that is fixed by the action of G, there is a G-invariant polynomial F on V, without constant term, such that F(v) ≠ 0. (en) Le théorème de Haboush est un théorème par lequel William Haboush a démontré une conjecture de Mumford, établissant que pour tout groupe algébrique réductif G sur un corps k, pour toute représentation de G sur un k-espace vectoriel V, et pour tout vecteur non nul v dans V fixe par l'action de G, il existe sur V un polynôme G-invariant F tel que F(v) ≠ 0 et F(0) = 0. (fr) |
rdfs:label | Haboush's theorem (en) Théorème de Haboush (fr) |
owl:sameAs | freebase:Haboush's theorem yago-res:Haboush's theorem wikidata:Haboush's theorem dbpedia-fr:Haboush's theorem https://global.dbpedia.org/id/3FZmd |
prov:wasDerivedFrom | wikipedia-en:Haboush's_theorem?oldid=1051891084&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Haboush's_theorem |
is dbo:wikiPageDisambiguates of | dbr:Haboush |
is dbo:wikiPageRedirects of | dbr:Haboush_theorem |
is dbo:wikiPageWikiLink of | dbr:List_of_algebraic_geometry_topics dbr:List_of_conjectures dbr:Mumford_conjecture dbr:David_Mumford dbr:Emmy_Noether dbr:Geometric_invariant_theory dbr:Steinberg_representation dbr:Linear_algebraic_group dbr:Haboush dbr:William_Haboush dbr:Reductive_group dbr:Haboush_theorem dbr:List_of_theorems |
is foaf:primaryTopic of | wikipedia-en:Haboush's_theorem |