dbo:abstract |
In der Mathematik ist die Weylsche Charakterformel oder Charakterformel von Weyl eine Formel zur Berechnung des Charakters einer Darstellung aus ihrem höchsten Gewicht. Sie wurde 1926 von Hermann Weyl bewiesen und folgt auch aus dem Atiyah-Bott-Fixpunktsatz. (de) In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl . There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula. By definition, the character of a representation of G is the trace of , as a function of a group element . The irreducible representations in this case are all finite-dimensional (this is part of the Peter–Weyl theorem); so the notion of trace is the usual one from linear algebra. Knowledge of the character of gives a lot of information about itself. Weyl's formula is a closed formula for the character , in terms of other objects constructed from G and its Lie algebra. (en) 리 군 표현론에서 바일 지표 공식(Weyl指標公式, 영어: Weyl character formula)은 주어진 복소수 기약 표현의 지표를 제시하는 공식이다. (ko) 数学において,表現論におけるワイルの指標公式(英: Weyl character formula)はコンパクトリー群の既約表現の指標をのことばで記述する.Hermann Weyl によって証明された. 定義により,G の表現 r の指標は群 G の元 g の関数としての r(g) のトレースである.この場合既約表現はすべて有限次元である(これはの一部である).よってトレースの概念は線型代数学の通常のものである.r の指標 ξ を知ることは r 自身の良い代替であり,アルゴリズム的内容を持ち得る.ワイルの公式は G から構成される他の対象と G のリー環のことばで ξ をで表す.ここで問題の表現は複素でありしたがって一般性を失うことなくユニタリ表現である;したがって既約は直既約,つまり2つの部分表現の直和でないことと同じ意味である. (ja) 外尔特徵標公式(Weyl's character formula) 描述緊李羣不可約表示的特徵標。其名來自證明者赫尔曼·外尔。 定義:羣G的表示r的特徵標為一函數 ,,其中Tr 為線性算子之迹。 (由彼得-外尔定理 可知緊李羣的任何不可約表示都是有限維的;故迹之定義為線性代數中之定義。) 特徵標 χ 記住了表示 r 本身的重要訊息。 外尔特徵標公式用羣G的其他資料來表達 χ 。 本文考慮複表示,不失一般亦設其為,因而「不可約」亦等價於「不可分解」(即非二子表示之直和)。 (zh) |
dbo:wikiPageExternalLink |
https://archive.org/details/introductiontoli00jame |
dbo:wikiPageID |
5011916 (xsd:integer) |
dbo:wikiPageLength |
19888 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1084905278 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Monster_Lie_algebra dbr:Representation_theory dbr:Demazure_character_formula dbr:Algebraic_character dbr:Jacobi_triple_product dbr:Lie_algebra_representation dbc:Representation_theory_of_Lie_groups dbr:Compact_Lie_group dbr:Analytic_function dbr:Mathematics dbr:Mathematische_Zeitschrift dbr:Generalized_Kac–Moody_algebra dbr:Representation_theory_of_SU(2) dbr:Lie_algebra dbr:Compact_group dbr:Harish-Chandra_character dbr:Macdonald_identities dbr:Admissible_representation dbr:Trace_of_a_matrix dbr:Rebecca_A._Herb dbr:Hans_Freudenthal dbr:Kac–Moody_algebra dbr:Kostant_partition_function dbr:Character_theory dbr:L'Hôpital's_rule dbr:Weight_(representation_theory) dbr:Reductive_group dbr:Infinitesimal_character dbr:Cartan_subalgebra dbr:Cartan_subgroup dbr:Casimir_element dbr:Root_system dbr:Semisimple_Lie_algebra dbr:Weyl_integration_formula dbr:Weyl_group dbr:Peter–Weyl_theorem dbr:Vandermonde_determinant dbr:Springer-Verlag dbr:Elliptic_modular_function dbr:Highest_weight dbr:Positive_root dbr:Closed_formula dbr:Weyl_dimension_formula |
dbp:author |
Duncan J. Melville (en) |
dbp:authorLink |
Hermann Weyl (en) |
dbp:first |
Hermann (en) |
dbp:id |
W/w130070 (en) |
dbp:last |
Weyl (en) |
dbp:title |
Weyl–Kac character formula (en) |
dbp:wikiPageUsesTemplate |
dbt:Springer dbt:Citation dbt:ISBN dbt:Main dbt:Reflist dbt:Short_description dbt:Isbn dbt:Harvs |
dbp:year |
1925 (xsd:integer) 1926 (xsd:integer) |
dct:subject |
dbc:Representation_theory_of_Lie_groups |
rdfs:comment |
In der Mathematik ist die Weylsche Charakterformel oder Charakterformel von Weyl eine Formel zur Berechnung des Charakters einer Darstellung aus ihrem höchsten Gewicht. Sie wurde 1926 von Hermann Weyl bewiesen und folgt auch aus dem Atiyah-Bott-Fixpunktsatz. (de) 리 군 표현론에서 바일 지표 공식(Weyl指標公式, 영어: Weyl character formula)은 주어진 복소수 기약 표현의 지표를 제시하는 공식이다. (ko) 数学において,表現論におけるワイルの指標公式(英: Weyl character formula)はコンパクトリー群の既約表現の指標をのことばで記述する.Hermann Weyl によって証明された. 定義により,G の表現 r の指標は群 G の元 g の関数としての r(g) のトレースである.この場合既約表現はすべて有限次元である(これはの一部である).よってトレースの概念は線型代数学の通常のものである.r の指標 ξ を知ることは r 自身の良い代替であり,アルゴリズム的内容を持ち得る.ワイルの公式は G から構成される他の対象と G のリー環のことばで ξ をで表す.ここで問題の表現は複素でありしたがって一般性を失うことなくユニタリ表現である;したがって既約は直既約,つまり2つの部分表現の直和でないことと同じ意味である. (ja) 外尔特徵標公式(Weyl's character formula) 描述緊李羣不可約表示的特徵標。其名來自證明者赫尔曼·外尔。 定義:羣G的表示r的特徵標為一函數 ,,其中Tr 為線性算子之迹。 (由彼得-外尔定理 可知緊李羣的任何不可約表示都是有限維的;故迹之定義為線性代數中之定義。) 特徵標 χ 記住了表示 r 本身的重要訊息。 外尔特徵標公式用羣G的其他資料來表達 χ 。 本文考慮複表示,不失一般亦設其為,因而「不可約」亦等價於「不可分解」(即非二子表示之直和)。 (zh) In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl . There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula. (en) |
rdfs:label |
Weylsche Charakterformel (de) 바일 지표 공식 (ko) ワイルの指標公式 (ja) Weyl character formula (en) 外尔特征标公式 (zh) |
owl:sameAs |
freebase:Weyl character formula wikidata:Weyl character formula dbpedia-de:Weyl character formula dbpedia-ja:Weyl character formula dbpedia-ko:Weyl character formula dbpedia-zh:Weyl character formula https://global.dbpedia.org/id/4xocu |
prov:wasDerivedFrom |
wikipedia-en:Weyl_character_formula?oldid=1084905278&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Weyl_character_formula |
is dbo:wikiPageRedirects of |
dbr:Weyl_vector dbr:Weyl–Kac_character_formula dbr:Freudenthal's_formula dbr:Freudenthal's_multiplicity_formula dbr:Freudenthal's_recursion_formula dbr:Harish-Chandra's_character_formula dbr:Harish-Chandra_character_formula dbr:Fredenthal's_recursion_formula dbr:Hermann_Weyl_character_formula dbr:Weyl's_character_formula dbr:Weyl's_denominator_formula dbr:Weyl's_dimension_formula dbr:Weyl-Kac_character_formula dbr:Weyl-kac_character_formula dbr:Weyl_character dbr:Weyl_denominator_formula dbr:Weyl_dimension_formula dbr:Weyl_formula |
is dbo:wikiPageWikiLink of |
dbr:Carl_Gustav_Jacob_Jacobi dbr:Schur_polynomial dbr:Algebraic_character dbr:Littelmann_path_model dbr:Representation_of_a_Lie_group dbr:Representation_theory_of_the_Lorentz_group dbr:Victor_Kac dbr:E7_(mathematics) dbr:Lie_algebra_representation dbr:List_of_representation_theory_topics dbr:List_of_scientific_laws_named_after_people dbr:Complete_homogeneous_symmetric_polynomial dbr:Generalized_Kac–Moody_algebra dbr:Glossary_of_Lie_groups_and_Lie_algebras dbr:Glossary_of_representation_theory dbr:Representation_theory_of_SU(2) dbr:Compact_group dbr:Demazure_module dbr:Harish-Chandra's_regularity_theorem dbr:Zonal_spherical_function dbr:Topological_group dbr:G2_(mathematics) dbr:Haboush's_theorem dbr:Linear_algebraic_group dbr:Affine_Lie_algebra dbr:E6_(mathematics) dbr:E8_(mathematics) dbr:Discrete_series_representation dbr:Kostant_partition_function dbr:List_of_Lie_groups_topics dbr:Hermann_Weyl dbr:Atiyah–Bott_fixed-point_theorem dbr:The_Classical_Groups dbr:Kazhdan–Lusztig_polynomial dbr:Maximal_torus dbr:Reductive_group dbr:Michael_Atiyah dbr:Michel_Demazure dbr:F4_(mathematics) dbr:List_of_things_named_after_Hermann_Weyl dbr:Semisimple_Lie_algebra dbr:Steinberg_formula dbr:Vandermonde_polynomial dbr:Representation_theory_of_semisimple_Lie_algebras dbr:Restricted_representation dbr:Theorem_of_the_highest_weight dbr:Weyl_integration_formula dbr:Peter–Weyl_theorem dbr:Weyl_vector dbr:Weyl–Kac_character_formula dbr:Freudenthal's_formula dbr:Freudenthal's_multiplicity_formula dbr:Freudenthal's_recursion_formula dbr:Harish-Chandra's_character_formula dbr:Harish-Chandra_character_formula dbr:Fredenthal's_recursion_formula dbr:Hermann_Weyl_character_formula dbr:Weyl's_character_formula dbr:Weyl's_denominator_formula dbr:Weyl's_dimension_formula dbr:Weyl-Kac_character_formula dbr:Weyl-kac_character_formula dbr:Weyl_character dbr:Weyl_denominator_formula dbr:Weyl_dimension_formula dbr:Weyl_formula |
is rdfs:seeAlso of |
dbr:Character_theory |
is foaf:primaryTopic of |
wikipedia-en:Weyl_character_formula |