Immunomics (original) (raw)
Immunomics is the study of immune system regulation and response to pathogens using genome-wide approaches. With the rise of genomic and proteomic technologies, scientists have been able to visualize biological networks and infer interrelationships between genes and/or proteins; recently, these technologies have been used to help better understand how the immune system functions and how it is regulated. Two thirds of the genome is active in one or more immune cell types and less than 1% of genes are uniquely expressed in a given type of cell. Therefore, it is critical that the expression patterns of these immune cell types be deciphered in the context of a network, and not as an individual, so that their roles be correctly characterized and related to one another. Defects of the immune sys
Property | Value |
---|---|
dbo:abstract | Immunomics is the study of immune system regulation and response to pathogens using genome-wide approaches. With the rise of genomic and proteomic technologies, scientists have been able to visualize biological networks and infer interrelationships between genes and/or proteins; recently, these technologies have been used to help better understand how the immune system functions and how it is regulated. Two thirds of the genome is active in one or more immune cell types and less than 1% of genes are uniquely expressed in a given type of cell. Therefore, it is critical that the expression patterns of these immune cell types be deciphered in the context of a network, and not as an individual, so that their roles be correctly characterized and related to one another. Defects of the immune system such as autoimmune diseases, immunodeficiency, and malignancies can benefit from genomic insights on pathological processes. For example, analyzing the systematic variation of gene expression can relate these patterns with specific diseases and gene networks important for immune functions. Traditionally, scientists studying the immune system have had to search for antigens on an individual basis and identify the protein sequence of these antigens (“epitopes”) that would stimulate an immune response. This procedure required that antigens be isolated from whole cells, digested into smaller fragments, and tested against T- and B-cells to observe T- and B- cell responses. These classical approaches could only visualize this system as a static condition and required a large amount of time and labor. Immunomics has made this approach easier by its ability to look at the immune system as a whole and characterize it as a dynamic model. It has revealed that some of the immune system's most distinguishing features are the continuous motility, turnover, and plasticity of its constituent cells. In addition, current genomic technologies, like microarrays, can capture immune system gene expression over time and can trace interactions of microorganisms with cells of the innate immune system. New, proteomic approaches, including T-cell and B-cells-epitope mapping, can also accelerate the pace at which scientists discover antibody-antigen relationships. (en) 免疫组学是使用全基因组方法研究免疫系统调节和对病原体的反应的学科。随着基因组学和蛋白质组学的技术的兴起,科学家已经能够可视化生物网络并推断基因和/或蛋白质之间的相互关系; 最近,这些技术已被用于帮助更好地了解免疫系统的功能和如何被调控。基因组的三分之二在一种或多种免疫细胞类型中是有活性的,但同时在给定类型的细胞中少于1%的基因被唯一地表达。 因此,如果能将免疫细胞类型的表达模式在相互关联的背景下解密分析,而不是作为个体进行单独研究,以使他它们的作用被正确地表征并相互关联。。免疫系统的缺陷,如自体免疫性疾病,免疫缺陷病毒和恶性肿瘤,可从病理过程的基础知识中获益。例如,分析基因表达的系统变异可以将这些模式与针对免疫功能重要的特定疾病和基因网络相关联。 传统上,研究免疫系统的科学家不得不在个别的基础上搜索抗原,并确定可以刺激免疫反应的这些抗原(“表位”)的蛋白质序列。 该方法要求将抗原从整个细胞中分离,消化成较小的片段,并针对T细胞和B细胞进行测试以观察T细胞和B细胞反应。这些经典方法只能将该系统视为静态的,并且需要大量的时间和劳动。 免疫学通过其将整个免疫系统看作是动态模型的能力,使得这种方法更容易。它揭示了一些免疫系统最显着的特征是其组成细胞的持续运动,周转和可塑性。此外,目前的基因组技术,如微阵列,可以随着时间捕获免疫系统基因表达,并可以跟踪微生物与先天免疫系统细胞的相互作用。新的蛋白质组学方法,包括T细胞和B细胞-,也可以加速科学家发现抗体-抗原关系的步伐。 免疫组学是免疫学的一个新兴分支,利用高通量的筛选技术(如免疫质谱、免疫微阵列等),对免疫系统进行系统性研究,阐释免疫的分子机制。免疫组学包括免疫基因组学、、肿瘤免疫组学、免疫信息学等。 (zh) |
dbo:thumbnail | wiki-commons:Special:FilePath/Lymphochip.jpg?width=300 |
dbo:wikiPageID | 33769881 (xsd:integer) |
dbo:wikiPageLength | 29725 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1094894548 (xsd:integer) |
dbo:wikiPageWikiLink | dbc:Branches_of_immunology dbr:BYSL dbr:Endocrinology dbr:Epitope dbr:Epitope_mapping dbr:MYC dbr:Dendritic_cells dbr:Alizadeh dbr:Allergy dbr:Pathogens dbr:Cytomegalovirus dbr:Vaccine dbr:ELISA dbr:Innate_immune_system dbr:Genome dbr:Phagocytosis dbr:Porphyromonas_gingivalis dbr:Open_reading_frames dbr:Multiple_sclerosis dbr:Antigens dbr:Apoptosis dbr:Lymphocytes dbr:Macrophages dbr:Major_histocompatibility_complex dbr:Chlamydia_pneumoniae dbr:Stanford_University dbr:Computational_biology dbr:Cytokines dbr:Cell_cycle dbr:Flow_cytometry dbr:Germinal_center dbr:Epitopes dbr:File:Lymphochip.jpg dbr:Helicobacter_pylori dbr:Bacillus_anthracis dbr:Fibroblasts dbr:Streptococcus_pneumoniae dbr:CDNA dbr:Chemokines dbr:Biological_network dbr:Immunogenicity dbr:Pathogenesis dbr:Vaccinia_virus dbr:Autoimmunity dbr:C-Jun_N-terminal_kinases dbr:Cytotoxic_T-cells dbr:Antibodies dbr:Antigen-presenting_cells dbr:Natural_killer_cells dbr:Oncogenesis dbr:Autoimmune_diseases dbr:Genomic dbr:Serum_(blood) dbr:Neisseria_meningitidis dbr:Immune_system dbr:Immunodeficiency dbr:Immunological_Genome_Project dbr:Immunome dbr:Immunoproteomics dbr:Lymphocyte dbr:Mycobacterium_tuberculosis dbr:NFAT dbr:ELISPOT dbr:Oncogene dbr:MAPK/ERK_kinase dbr:Microarrays dbr:Proteomic dbr:Mitogenesis dbr:RNAi dbr:Adaptive_immunity dbr:Immunoinformatics dbr:Malignancies dbr:CD4+_T_cells dbr:Diffuse_large_cell_lymphoma dbr:Expressed_sequence_tags dbr:NF-kB dbr:T-cells dbr:T-helper_cells dbr:Ash_Alizadeh dbr:Tetramer_staining |
dbp:wikiPageUsesTemplate | dbt:Main dbt:More_citations_needed dbt:Portal_bar dbt:Reflist dbt:Short_description dbt:Genomics |
dcterms:subject | dbc:Branches_of_immunology |
gold:hypernym | dbr:Study |
rdf:type | yago:WikicatBranchesOfImmunology yago:Abstraction100002137 yago:AdministrativeUnit108077292 yago:Branch108401248 yago:Division108220714 yago:Group100031264 yago:Organization108008335 yago:YagoLegalActor yago:YagoLegalActorGeo yago:YagoPermanentlyLocatedEntity dbo:Book yago:SocialGroup107950920 yago:Unit108189659 |
rdfs:comment | Immunomics is the study of immune system regulation and response to pathogens using genome-wide approaches. With the rise of genomic and proteomic technologies, scientists have been able to visualize biological networks and infer interrelationships between genes and/or proteins; recently, these technologies have been used to help better understand how the immune system functions and how it is regulated. Two thirds of the genome is active in one or more immune cell types and less than 1% of genes are uniquely expressed in a given type of cell. Therefore, it is critical that the expression patterns of these immune cell types be deciphered in the context of a network, and not as an individual, so that their roles be correctly characterized and related to one another. Defects of the immune sys (en) 免疫组学是使用全基因组方法研究免疫系统调节和对病原体的反应的学科。随着基因组学和蛋白质组学的技术的兴起,科学家已经能够可视化生物网络并推断基因和/或蛋白质之间的相互关系; 最近,这些技术已被用于帮助更好地了解免疫系统的功能和如何被调控。基因组的三分之二在一种或多种免疫细胞类型中是有活性的,但同时在给定类型的细胞中少于1%的基因被唯一地表达。 因此,如果能将免疫细胞类型的表达模式在相互关联的背景下解密分析,而不是作为个体进行单独研究,以使他它们的作用被正确地表征并相互关联。。免疫系统的缺陷,如自体免疫性疾病,免疫缺陷病毒和恶性肿瘤,可从病理过程的基础知识中获益。例如,分析基因表达的系统变异可以将这些模式与针对免疫功能重要的特定疾病和基因网络相关联。 传统上,研究免疫系统的科学家不得不在个别的基础上搜索抗原,并确定可以刺激免疫反应的这些抗原(“表位”)的蛋白质序列。 该方法要求将抗原从整个细胞中分离,消化成较小的片段,并针对T细胞和B细胞进行测试以观察T细胞和B细胞反应。这些经典方法只能将该系统视为静态的,并且需要大量的时间和劳动。 免疫组学是免疫学的一个新兴分支,利用高通量的筛选技术(如免疫质谱、免疫微阵列等),对免疫系统进行系统性研究,阐释免疫的分子机制。免疫组学包括免疫基因组学、、肿瘤免疫组学、免疫信息学等。 (zh) |
rdfs:label | Immunomics (en) 免疫组学 (zh) |
owl:sameAs | freebase:Immunomics yago-res:Immunomics wikidata:Immunomics dbpedia-zh:Immunomics https://global.dbpedia.org/id/4n89R |
prov:wasDerivedFrom | wikipedia-en:Immunomics?oldid=1094894548&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Lymphochip.jpg |
foaf:isPrimaryTopicOf | wikipedia-en:Immunomics |
is dbo:wikiPageWikiLink of | dbr:Public_health_genomics dbr:Index_of_immunology_articles dbr:Genomics dbr:Computational_immunology dbr:Immunology dbr:Exposure_science dbr:Immunological_Genome_Project dbr:Immunome dbr:Immunoproteomics dbr:Outline_of_immunology |
is foaf:primaryTopic of | wikipedia-en:Immunomics |