Lagrange reversion theorem (original) (raw)
In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions with such functions. Let v be a function of x and y in terms of another function f such that Then for any function g, for small enough y: If g is the identity, this becomes In which case the equation can be derived using perturbation theory. Lagrange's reversion theorem is used to obtain numerical solutions to Kepler's equation.
Property | Value |
---|---|
dbo:abstract | In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions with such functions. Let v be a function of x and y in terms of another function f such that Then for any function g, for small enough y: If g is the identity, this becomes In which case the equation can be derived using perturbation theory. In 1770, Joseph Louis Lagrange (1736–1813) published his power series solution of the implicit equation for v mentioned above. However, his solution used cumbersome series expansions of logarithms. In 1780, Pierre-Simon Laplace (1749–1827) published a simpler proof of the theorem, which was based on relations between partial derivatives with respect to the variable x and the parameter y. Charles Hermite (1822–1901) presented the most straightforward proof of the theorem by using contour integration. Lagrange's reversion theorem is used to obtain numerical solutions to Kepler's equation. (en) En matemáticas, el teorema de la reversión de Lagrange nos da la expansión en serie de potencias o en serie formal de potencias de ciertas funciones implícitamente definidas, de hecho, de composiciones de tales funciones. Sea una función de e definida a partir de otra función tal que Entonces, cualquier función se puede desarrollar en serie de Taylor alrededor de para pequeño, es decir, se tiene Si es la función identidad, es decir, , En 1770, Joseph Louis Lagrange (1736–1813) publicó su solución en serie de potencias de la ecuación implícita de antes mencionada. Sin embargo, su solución era algo engorrosa, pues utilizó desarrollos en serie de logaritmos. En 1780, Pierre-Simon Laplace (1749–1827) publicó una prueba más simple del teorema, la cual estaba basada en relaciones entre derivadas parcialescon respecto a la variable y al parámetro . Charles Hermite (1822–1901) presentó la prueba más sencilla del teorema usando integración de contorno. El teorema de reversión de Lagrange se usa para obtener solucciones numéricas de la ecuación de Kepler. (es) |
dbo:wikiPageExternalLink | http://info.ifpan.edu.pl/firststep/aw-works/fsII/mul/mueller.html http://mathworld.wolfram.com/LagrangeInversionTheorem.html https://web.archive.org/web/20040920011235/http:/www.quantlet.com/mdstat/scripts/xfg/html/xfghtmlnode8.html |
dbo:wikiPageID | 953148 (xsd:integer) |
dbo:wikiPageInterLanguageLink | dbpedia-fr:Théorème_d'inversion_de_Lagrange |
dbo:wikiPageLength | 4796 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1031043439 (xsd:integer) |
dbo:wikiPageWikiLink | dbc:Inverse_functions dbr:MathWorld dbr:Mathematics dbr:Equation_of_time dbr:Kepler's_equation dbr:Perturbation_theory dbr:Formal_power_series dbc:Theorems_in_analysis dbr:Charles_Hermite dbr:Joseph_Louis_Lagrange dbr:Pierre-Simon_Laplace dbr:Series_(mathematics) dbr:Implicitly_defined_function |
dbp:wikiPageUsesTemplate | dbt:For dbt:Reflist |
dct:subject | dbc:Inverse_functions dbc:Theorems_in_analysis |
rdf:type | yago:WikicatTheoremsInAnalysis yago:Abstraction100002137 yago:Communication100033020 yago:Function113783816 yago:InverseFunction113784537 yago:MathematicalRelation113783581 yago:Message106598915 yago:Proposition106750804 yago:Relation100031921 yago:WikicatInverseFunctions yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment | In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions with such functions. Let v be a function of x and y in terms of another function f such that Then for any function g, for small enough y: If g is the identity, this becomes In which case the equation can be derived using perturbation theory. Lagrange's reversion theorem is used to obtain numerical solutions to Kepler's equation. (en) En matemáticas, el teorema de la reversión de Lagrange nos da la expansión en serie de potencias o en serie formal de potencias de ciertas funciones implícitamente definidas, de hecho, de composiciones de tales funciones. Sea una función de e definida a partir de otra función tal que Entonces, cualquier función se puede desarrollar en serie de Taylor alrededor de para pequeño, es decir, se tiene Si es la función identidad, es decir, , El teorema de reversión de Lagrange se usa para obtener solucciones numéricas de la ecuación de Kepler. (es) |
rdfs:label | Teorema de reversión de Lagrange (es) Lagrange reversion theorem (en) |
owl:sameAs | freebase:Lagrange reversion theorem yago-res:Lagrange reversion theorem wikidata:Lagrange reversion theorem dbpedia-es:Lagrange reversion theorem https://global.dbpedia.org/id/4pbLo |
prov:wasDerivedFrom | wikipedia-en:Lagrange_reversion_theorem?oldid=1031043439&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Lagrange_reversion_theorem |
is dbo:wikiPageWikiLink of | dbr:Index_of_combinatorics_articles dbr:List_of_scientific_laws_named_after_people dbr:Laplace_limit dbr:List_of_French_inventions_and_discoveries dbr:Lagrange_inversion_theorem dbr:Pierre-Simon_Laplace dbr:List_of_theorems dbr:List_of_things_named_after_Joseph-Louis_Lagrange dbr:Lagrange's_theorem |
is foaf:primaryTopic of | wikipedia-en:Lagrange_reversion_theorem |