dbo:abstract |
In mathematics, the local Langlands conjectures, introduced by Robert Langlands , are part of the Langlands program. They describe a correspondence between the complex representations of a reductive algebraic group G over a local field F, and representations of the Langlands group of F into the L-group of G. This correspondence is not a bijection in general. The conjectures can be thought of as a generalization of local class field theory from abelian Galois groups to non-abelian Galois groups. (en) Inom matematiken är lokala Langlandsförmodandena, introducerade av Langlands , en del av Langlands program. De beskriver en korrespondens mellan komplexa representationer av en reduktiv G över en F och representationer av av F till L-gruppen av G. Denna korrespondens är i allmänhet inte bijektiv. Förmodandena kan ses som en generalisering av från abelska Galoisgrupper till icke-abelska Galoisgrupper. (sv) |
dbo:wikiPageExternalLink |
https://www.ams.org/publications/online-books/pspum332-index https://books.google.com/books%3Fid=_p5qAAAAMAAJ http://publications.ias.edu/rpl/section/21 http://www.sunsite.ubc.ca/DigitalMathArchive/Langlands/JL.html%23book http://mathunion.org/ICM/ICM2006.2/ http://www.numdam.org/item%3Fid=SB_1998-1999__41__191_0 https://books.google.com/books%3Fid=sigBbO69hvMC https://web.archive.org/web/20200507053302/http:/users.ictp.it/~pub_off/lectures/lns021/Wedhorn/Wedhorn.pdf%7C http://www.numdam.org/item%3Fid=SB_1991-1992__34__369_0 http://www.numdam.org/item/SB_1979-1980__22__112_0 http://www.numdam.org/item/SB_1979-1980__22__112_0/ http://users.ictp.it/~pub_off/lectures/lns021/Wedhorn/Wedhorn.pdf http://video.ias.edu/Automorphic-Forms-taylor https://books.google.com/books%3Fid=J3bciC6TYY8C http://www.math.jussieu.fr/~harris/IHPcourse.pdf%7Cyear=2000%7Ctitle=The http://www-math.mit.edu/~dav/paper.html http://publications.ias.edu/rpl/ http://publications.ias.edu/rpl/paper/16 |
dbo:wikiPageID |
7676971 (xsd:integer) |
dbo:wikiPageLength |
19065 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1020399070 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Princeton_University_Press dbr:Algebraic_group dbr:Annals_of_Mathematics dbr:International_Mathematics_Research_Notices dbr:Inventiones_Mathematicae dbr:(g,K)-module dbc:Conjectures dbc:Representation_theory_of_Lie_groups dbr:Mathematics dbr:Bernstein–Zelevinsky_classification dbr:Symplectic_group dbr:Galois_group dbr:Langlands_classification dbr:Langlands_group dbr:Langlands_program dbr:Langlands–Deligne_local_constant dbr:Local_class_field_theory dbr:American_Mathematical_Society dbc:Zeta_and_L-functions dbc:Class_field_theory dbc:Automorphic_forms dbc:Langlands_program dbr:Langlands_dual dbr:Weil_group dbr:Springer-Verlag dbr:Artin_map dbr:Local_Langlands_group dbr:Weil–Deligne_group dbr:Symplectic_similitude_group |
dbp:authorlink |
Robert Langlands (en) |
dbp:first |
Robert (en) |
dbp:last |
Langlands (en) |
dbp:wikiPageUsesTemplate |
dbt:Citation dbt:Harv dbt:Harvtxt dbt:Harvs |
dbp:year |
1967 (xsd:integer) 1970 (xsd:integer) |
dct:subject |
dbc:Conjectures dbc:Representation_theory_of_Lie_groups dbc:Zeta_and_L-functions dbc:Class_field_theory dbc:Automorphic_forms dbc:Langlands_program |
gold:hypernym |
dbr:Part |
rdf:type |
yago:WikicatAutomorphicForms yago:WikicatConjectures yago:Abstraction100002137 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Form106290637 yago:Hypothesis105888929 yago:Idea105833840 yago:LanguageUnit106284225 yago:Part113809207 yago:PsychologicalFeature100023100 yago:Relation100031921 yago:Word106286395 yago:Speculation105891783 |
rdfs:comment |
In mathematics, the local Langlands conjectures, introduced by Robert Langlands , are part of the Langlands program. They describe a correspondence between the complex representations of a reductive algebraic group G over a local field F, and representations of the Langlands group of F into the L-group of G. This correspondence is not a bijection in general. The conjectures can be thought of as a generalization of local class field theory from abelian Galois groups to non-abelian Galois groups. (en) Inom matematiken är lokala Langlandsförmodandena, introducerade av Langlands , en del av Langlands program. De beskriver en korrespondens mellan komplexa representationer av en reduktiv G över en F och representationer av av F till L-gruppen av G. Denna korrespondens är i allmänhet inte bijektiv. Förmodandena kan ses som en generalisering av från abelska Galoisgrupper till icke-abelska Galoisgrupper. (sv) |
rdfs:label |
Local Langlands conjectures (en) Lokala Langlandsförmodandena (sv) |
owl:sameAs |
freebase:Local Langlands conjectures yago-res:Local Langlands conjectures wikidata:Local Langlands conjectures dbpedia-sv:Local Langlands conjectures https://global.dbpedia.org/id/4qmog |
prov:wasDerivedFrom |
wikipedia-en:Local_Langlands_conjectures?oldid=1020399070&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Local_Langlands_conjectures |
is dbo:knownFor of |
dbr:Peter_Scholze__Peter_Scholze__1 |
is dbo:wikiPageRedirects of |
dbr:Harris-Taylor dbr:Harris–Taylor dbr:Local_Langlands_conjecture dbr:Local_Langlands_correspondence |
is dbo:wikiPageWikiLink of |
dbr:Ulrich_Stuhler dbr:Peter_Scholze dbr:Richard_Taylor_(mathematician) dbr:Robert_Langlands dbr:L-packet dbr:Christophe_Breuil dbr:Lafforgue's_theorem dbr:Arithmetic_geometry dbr:Gan–Gross–Prasad_conjecture dbr:Langlands_program dbr:Local_class_field_theory dbr:Harris-Taylor dbr:Laurent_Fargues dbr:Philip_Kutzko dbr:Harris–Taylor dbr:Local_Langlands_conjecture dbr:Local_Langlands_correspondence |
is foaf:primaryTopic of |
wikipedia-en:Local_Langlands_conjectures |