Loop subdivision surface (original) (raw)

Property Value
dbo:abstract Loop Subdivision Surface ist ein Unterteilungsschema für Dreiecksnetze, entwickelt von Charles Loop. Dabei wird jedes Dreieck in vier neue Dreiecke unterteilt, wodurch auch neue Punkte entstehen. (de) In computer graphics, the Loop method for subdivision surfaces is an approximating subdivision scheme developed by Charles Loop in 1987 for triangular meshes. Prior methods, namely Catmull-Clark and Doo-Sabin (1978), focused on quad meshes. Loop subdivision surfaces are defined recursively, dividing each triangle into four smaller ones. The method is based on a quartic box spline. It generates C2 continuous limit surfaces everywhere except at extraordinary vertices, where they are C1 continuous. (en)
dbo:thumbnail wiki-commons:Special:FilePath/Loop_Subdivision_Icosahedron.svg?width=300
dbo:wikiPageExternalLink http://charlesloop.com/ http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/loop.pdf http://www.dgp.toronto.edu/~stam/reality/Research/SubdivEval/index.html https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/thesis-10.pdf
dbo:wikiPageID 12626725 (xsd:integer)
dbo:wikiPageLength 2092 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1099908770 (xsd:integer)
dbo:wikiPageWikiLink dbr:Quartic_function dbr:Polygon_mesh dbr:Mountain_faces dbr:Erosion dbr:Geodesic_polyhedron dbr:Triangle_mesh dbr:Box_spline dbr:Computer_graphics dbr:Subdivision_surface dbc:3D_computer_graphics dbr:Doo-Sabin_subdivision_surface dbr:Parametric_continuity dbc:Multivariate_interpolation dbr:Geologists dbr:Catmull-Clark_subdivision_surface dbr:Appalachians dbr:Catmull-Clark dbr:File:Loop_Subdivision_Icosahedron.svg
dbp:wikiPageUsesTemplate dbt:Citation_needed dbt:Short_description dbt:Compu-stub
dct:subject dbc:3D_computer_graphics dbc:Multivariate_interpolation
gold:hypernym dbr:Scheme
rdf:type dbo:Organisation
rdfs:comment Loop Subdivision Surface ist ein Unterteilungsschema für Dreiecksnetze, entwickelt von Charles Loop. Dabei wird jedes Dreieck in vier neue Dreiecke unterteilt, wodurch auch neue Punkte entstehen. (de) In computer graphics, the Loop method for subdivision surfaces is an approximating subdivision scheme developed by Charles Loop in 1987 for triangular meshes. Prior methods, namely Catmull-Clark and Doo-Sabin (1978), focused on quad meshes. Loop subdivision surfaces are defined recursively, dividing each triangle into four smaller ones. The method is based on a quartic box spline. It generates C2 continuous limit surfaces everywhere except at extraordinary vertices, where they are C1 continuous. (en)
rdfs:label Loop Subdivision Surface (de) Loop subdivision surface (en)
owl:sameAs freebase:Loop subdivision surface wikidata:Loop subdivision surface dbpedia-de:Loop subdivision surface https://global.dbpedia.org/id/4tceV
prov:wasDerivedFrom wikipedia-en:Loop_subdivision_surface?oldid=1099908770&ns=0
foaf:depiction wiki-commons:Special:FilePath/Loop_Subdivision_Icosahedron.svg
foaf:isPrimaryTopicOf wikipedia-en:Loop_subdivision_surface
is dbo:wikiPageRedirects of dbr:Loop_subdivision_surfaces
is dbo:wikiPageWikiLink of dbr:Apollonian_network dbr:Doo–Sabin_subdivision_surface dbr:List_of_numerical_analysis_topics dbr:Computer_graphics dbr:Subdivision_surface dbr:Matthias_Niessner dbr:Goldberg–Coxeter_construction dbr:Catmull–Clark_subdivision_surface dbr:Loop_subdivision_surfaces
is dbp:caption of dbr:Subdivision_surface
is foaf:primaryTopic of wikipedia-en:Loop_subdivision_surface