dbo:abstract |
Loop Subdivision Surface ist ein Unterteilungsschema für Dreiecksnetze, entwickelt von Charles Loop. Dabei wird jedes Dreieck in vier neue Dreiecke unterteilt, wodurch auch neue Punkte entstehen. (de) In computer graphics, the Loop method for subdivision surfaces is an approximating subdivision scheme developed by Charles Loop in 1987 for triangular meshes. Prior methods, namely Catmull-Clark and Doo-Sabin (1978), focused on quad meshes. Loop subdivision surfaces are defined recursively, dividing each triangle into four smaller ones. The method is based on a quartic box spline. It generates C2 continuous limit surfaces everywhere except at extraordinary vertices, where they are C1 continuous. (en) |
dbo:thumbnail |
wiki-commons:Special:FilePath/Loop_Subdivision_Icosahedron.svg?width=300 |
dbo:wikiPageExternalLink |
http://charlesloop.com/ http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/loop.pdf http://www.dgp.toronto.edu/~stam/reality/Research/SubdivEval/index.html https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/thesis-10.pdf |
dbo:wikiPageID |
12626725 (xsd:integer) |
dbo:wikiPageLength |
2092 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1099908770 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Quartic_function dbr:Polygon_mesh dbr:Mountain_faces dbr:Erosion dbr:Geodesic_polyhedron dbr:Triangle_mesh dbr:Box_spline dbr:Computer_graphics dbr:Subdivision_surface dbc:3D_computer_graphics dbr:Doo-Sabin_subdivision_surface dbr:Parametric_continuity dbc:Multivariate_interpolation dbr:Geologists dbr:Catmull-Clark_subdivision_surface dbr:Appalachians dbr:Catmull-Clark dbr:File:Loop_Subdivision_Icosahedron.svg |
dbp:wikiPageUsesTemplate |
dbt:Citation_needed dbt:Short_description dbt:Compu-stub |
dct:subject |
dbc:3D_computer_graphics dbc:Multivariate_interpolation |
gold:hypernym |
dbr:Scheme |
rdf:type |
dbo:Organisation |
rdfs:comment |
Loop Subdivision Surface ist ein Unterteilungsschema für Dreiecksnetze, entwickelt von Charles Loop. Dabei wird jedes Dreieck in vier neue Dreiecke unterteilt, wodurch auch neue Punkte entstehen. (de) In computer graphics, the Loop method for subdivision surfaces is an approximating subdivision scheme developed by Charles Loop in 1987 for triangular meshes. Prior methods, namely Catmull-Clark and Doo-Sabin (1978), focused on quad meshes. Loop subdivision surfaces are defined recursively, dividing each triangle into four smaller ones. The method is based on a quartic box spline. It generates C2 continuous limit surfaces everywhere except at extraordinary vertices, where they are C1 continuous. (en) |
rdfs:label |
Loop Subdivision Surface (de) Loop subdivision surface (en) |
owl:sameAs |
freebase:Loop subdivision surface wikidata:Loop subdivision surface dbpedia-de:Loop subdivision surface https://global.dbpedia.org/id/4tceV |
prov:wasDerivedFrom |
wikipedia-en:Loop_subdivision_surface?oldid=1099908770&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/Loop_Subdivision_Icosahedron.svg |
foaf:isPrimaryTopicOf |
wikipedia-en:Loop_subdivision_surface |
is dbo:wikiPageRedirects of |
dbr:Loop_subdivision_surfaces |
is dbo:wikiPageWikiLink of |
dbr:Apollonian_network dbr:Doo–Sabin_subdivision_surface dbr:List_of_numerical_analysis_topics dbr:Computer_graphics dbr:Subdivision_surface dbr:Matthias_Niessner dbr:Goldberg–Coxeter_construction dbr:Catmull–Clark_subdivision_surface dbr:Loop_subdivision_surfaces |
is dbp:caption of |
dbr:Subdivision_surface |
is foaf:primaryTopic of |
wikipedia-en:Loop_subdivision_surface |