Monotone class theorem (original) (raw)

Property Value
dbo:abstract Der Satz über monotone Klassen ist ein zentraler Satz der Maßtheorie, dem Teilgebiet der Mathematik, das sich mit den Eigenschaften von Maßräumen und Funktionen auf ihnen beschäftigt. (de) In measure theory and probability, the monotone class theorem connects monotone classes and sigma-algebras. The theorem says that the smallest containing an algebra of sets is precisely the smallest 𝜎-algebra containing It is used as a type of transfinite induction to prove many other theorems, such as Fubini's theorem. (en) Теорема про монотонний клас — твердження у теорії міри і теорії ймовірностей про рівність монотонного класу і σ-кільця породжених деяким кільцем множин. (uk)
dbo:wikiPageID 4719864 (xsd:integer)
dbo:wikiPageInterLanguageLink dbpedia-fr:Lemme_de_classe_monotone
dbo:wikiPageLength 4518 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1106927279 (xsd:integer)
dbo:wikiPageWikiLink dbr:Ring_of_sets dbr:Transfinite_induction dbr:Measure_(mathematics) dbc:Theorems_in_measure_theory dbr:Sigma-algebra dbr:Closure_(mathematics) dbr:Fubini's_theorem dbr:Dynkin_system dbr:Field_of_sets dbr:Family_of_sets dbr:Rick_Durrett dbr:Probability_theory dbc:Families_of_sets dbr:Pi_system
dbp:drop hidden (en)
dbp:mathStatement Let be an algebra of sets and define to be the smallest monotone class containing Then is precisely the -algebra generated by ; that is, (en) Let be a -system that contains and let be a collection of functions from to with the following properties: # If then # If and then and # If is a sequence of non-negative functions that increase to a bounded function then Then contains all bounded functions that are measurable with respect to which is the sigma-algebra generated by (en)
dbp:name Monotone class theorem for functions (en) Monotone class theorem for sets (en)
dbp:proof The assumption , and imply that is a -system. By and the − theorem, Statement implies that contains all simple functions, and then implies that contains all bounded functions measurable with respect to (en)
dbp:wikiPageUsesTemplate dbt:Lambda dbt:Sigma dbt:Annotated_link dbt:Pi dbt:Reflist dbt:Visible_anchor dbt:Math_proof dbt:Math_theorem dbt:Families_of_sets dbt:Durrett_Probability_Theory_and_Examples_5th_Edition
dct:subject dbc:Theorems_in_measure_theory dbc:Families_of_sets
rdf:type yago:WikicatMathematicalTheorems yago:WikicatTheoremsInMeasureTheory yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293
rdfs:comment Der Satz über monotone Klassen ist ein zentraler Satz der Maßtheorie, dem Teilgebiet der Mathematik, das sich mit den Eigenschaften von Maßräumen und Funktionen auf ihnen beschäftigt. (de) In measure theory and probability, the monotone class theorem connects monotone classes and sigma-algebras. The theorem says that the smallest containing an algebra of sets is precisely the smallest 𝜎-algebra containing It is used as a type of transfinite induction to prove many other theorems, such as Fubini's theorem. (en) Теорема про монотонний клас — твердження у теорії міри і теорії ймовірностей про рівність монотонного класу і σ-кільця породжених деяким кільцем множин. (uk)
rdfs:label Satz über monotone Klassen (de) Monotone class theorem (en) Теорема про монотонний клас (uk)
owl:sameAs freebase:Monotone class theorem yago-res:Monotone class theorem wikidata:Monotone class theorem dbpedia-de:Monotone class theorem dbpedia-he:Monotone class theorem dbpedia-uk:Monotone class theorem https://global.dbpedia.org/id/2H2fq
prov:wasDerivedFrom wikipedia-en:Monotone_class_theorem?oldid=1106927279&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Monotone_class_theorem
is dbo:wikiPageDisambiguates of dbr:Monotone
is dbo:wikiPageRedirects of dbr:Monotone_class dbr:Monotone_class_lemma
is dbo:wikiPageWikiLink of dbr:Monotone dbr:Σ-algebra dbr:Compact_closed_category dbr:AIXI dbr:Pi-system dbr:List_of_theorems dbr:Point_process dbr:Monotone_class dbr:Monotone_class_lemma
is foaf:primaryTopic of wikipedia-en:Monotone_class_theorem