Pi-system (original) (raw)

About DBpedia

Ein π-System, auch durchschnittstabiles Mengensystem oder kurz schnittstabiles System genannt, ist ein spezielles Mengensystem, das im axiomatischen Aufbau der Wahrscheinlichkeitstheorie und der Maßtheorie verwendet werden kann.

Property Value
dbo:abstract Ein π-System, auch durchschnittstabiles Mengensystem oder kurz schnittstabiles System genannt, ist ein spezielles Mengensystem, das im axiomatischen Aufbau der Wahrscheinlichkeitstheorie und der Maßtheorie verwendet werden kann. (de) In mathematics, a π-system (or pi-system) on a set is a collection of certain subsets of such that * is non-empty. * If then That is, is a non-empty family of subsets of that is closed under non-empty finite intersections.The importance of π-systems arises from the fact that if two probability measures agree on a π-system, then they agree on the 𝜎-algebra generated by that π-system. Moreover, if other properties, such as equality of integrals, hold for the π-system, then they hold for the generated 𝜎-algebra as well. This is the case whenever the collection of subsets for which the property holds is a 𝜆-system. π-systems are also useful for checking independence of random variables. This is desirable because in practice, π-systems are often simpler to work with than 𝜎-algebras. For example, it may be awkward to work with 𝜎-algebras generated by infinitely many sets So instead we may examine the union of all 𝜎-algebras generated by finitely many sets This forms a π-system that generates the desired 𝜎-algebra. Another example is the collection of all intervals of the real line, along with the empty set, which is a π-system that generates the very important Borel 𝜎-algebra of subsets of the real line. (en) En mathématiques, un π-système (ou pi-système) sur un ensemble est un ensemble de parties de stable par intersection. Les π-systèmes font partie des familles d'ensembles que l'on rencontre en théorie de la mesure et théorie des probabilités. On sait par exemple grâce au lemme de classe monotone que deux mesures finies, et en particulier deux mesures de probabilités, dont les valeurs coïncident sur un π-système, coïncident également sur la tribu engendrée par le dit π-système. Les π-systèmes offrent donc une famille d'ensembles de prédilection, et relativement simple, pour vérifier l'égalité de deux mesures ou bien l'unicité de la construction d'une mesure. (fr) In matematica, un sistema pi, o anche -sistema, su un insieme è una famiglia P non vuota di sottoinsiemi di (ovvero ), tale che l'intersezione di due elementi (e quindi di un numero finito di elementi) di P è ancora in P; ovvero P è stabile per intersezioni finite. (it) π-układ – rodzina zbiorów zamknięta na branie skończonych przekrojów, mająca zastosowanie przede wszystkim w teorii mnogości, teorii miary i rachunku prawdopodobieństwa. (pl) Em um conjunto Ω, em matemática, um sistema Pi (ou sistema π) é um conjunto P de determinados subconjuntos de Ω, tal que: * P não é vazio. * A ∩ B ∈ P, sempre que A e B estão em P. (pt)
dbo:wikiPageID 4050532 (xsd:integer)
dbo:wikiPageLength 15908 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1106927305 (xsd:integer)
dbo:wikiPageWikiLink dbr:Cartesian_product dbr:Probability_distribution dbr:Sigma_algebra dbr:Mathematics dbr:Measure_theory dbr:Monotone_class_theorem dbr:Closure_(mathematics) dbr:Empty_set dbr:Measurable_function dbr:Disjoint_sets dbr:Cumulative_distribution_function dbr:Dynkin_system dbr:Eugene_Dynkin dbr:Filter_(set_theory) dbr:Finite_intersection_property dbr:Family_of_sets dbr:Random_variable dbr:Intersection_(set_theory) dbr:Interval_(mathematics) dbc:Families_of_sets dbc:Measure_theory dbr:Borel_set dbr:Independence_(probability_theory) dbr:Independent_and_identically_distributed_random_variables dbr:Set_(mathematics) dbr:Probability_measure dbr:Real_line dbr:Stochastic_process dbr:Topological_space dbr:Subset dbr:Open_subset dbr:Carathéodory_extension_theorem dbr:Prefilter
dbp:wikiPageUsesTemplate dbt:Lambda dbt:Sigma dbt:Anchor dbt:Annotated_link dbt:Cite_book dbt:Delta dbt:Em dbt:Pi dbt:Reflist dbt:Short_description dbt:This dbt:Measure_theory dbt:Families_of_sets dbt:Durrett_Probability_Theory_and_Examples_5th_Edition
dct:subject dbc:Families_of_sets dbc:Measure_theory
rdfs:comment Ein π-System, auch durchschnittstabiles Mengensystem oder kurz schnittstabiles System genannt, ist ein spezielles Mengensystem, das im axiomatischen Aufbau der Wahrscheinlichkeitstheorie und der Maßtheorie verwendet werden kann. (de) En mathématiques, un π-système (ou pi-système) sur un ensemble est un ensemble de parties de stable par intersection. Les π-systèmes font partie des familles d'ensembles que l'on rencontre en théorie de la mesure et théorie des probabilités. On sait par exemple grâce au lemme de classe monotone que deux mesures finies, et en particulier deux mesures de probabilités, dont les valeurs coïncident sur un π-système, coïncident également sur la tribu engendrée par le dit π-système. Les π-systèmes offrent donc une famille d'ensembles de prédilection, et relativement simple, pour vérifier l'égalité de deux mesures ou bien l'unicité de la construction d'une mesure. (fr) In matematica, un sistema pi, o anche -sistema, su un insieme è una famiglia P non vuota di sottoinsiemi di (ovvero ), tale che l'intersezione di due elementi (e quindi di un numero finito di elementi) di P è ancora in P; ovvero P è stabile per intersezioni finite. (it) π-układ – rodzina zbiorów zamknięta na branie skończonych przekrojów, mająca zastosowanie przede wszystkim w teorii mnogości, teorii miary i rachunku prawdopodobieństwa. (pl) Em um conjunto Ω, em matemática, um sistema Pi (ou sistema π) é um conjunto P de determinados subconjuntos de Ω, tal que: * P não é vazio. * A ∩ B ∈ P, sempre que A e B estão em P. (pt) In mathematics, a π-system (or pi-system) on a set is a collection of certain subsets of such that * is non-empty. * If then That is, is a non-empty family of subsets of that is closed under non-empty finite intersections.The importance of π-systems arises from the fact that if two probability measures agree on a π-system, then they agree on the 𝜎-algebra generated by that π-system. Moreover, if other properties, such as equality of integrals, hold for the π-system, then they hold for the generated 𝜎-algebra as well. This is the case whenever the collection of subsets for which the property holds is a 𝜆-system. π-systems are also useful for checking independence of random variables. (en)
rdfs:label Π-System (de) Pi-système (fr) Sistema pi (it) Pi-system (en) Π-układ (pl) Sistema Pi (pt)
owl:sameAs wikidata:Pi-system dbpedia-de:Pi-system dbpedia-fr:Pi-system dbpedia-it:Pi-system dbpedia-pl:Pi-system dbpedia-pt:Pi-system https://global.dbpedia.org/id/3fVg1
prov:wasDerivedFrom wikipedia-en:Pi-system?oldid=1106927305&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Pi-system
is dbo:wikiPageRedirects of dbr:Pi_system dbr:Dynkin's_π-system dbr:Pi–system
is dbo:wikiPageWikiLink of dbr:List_of_set_identities_and_relations dbr:Ultrafilter_(set_theory) dbr:Σ-algebra dbr:(4+3)_cycloaddition dbr:Topology dbr:Dynkin_system dbr:Filter_(set_theory) dbr:Filters_in_topology dbr:Finite_intersection_property dbr:Base_(topology) dbr:Directed_set dbr:Family_of_sets dbr:Pi_system dbr:Dynkin's_π-system dbr:Pi–system
is foaf:primaryTopic of wikipedia-en:Pi-system