dbo:abstract |
Una regresión no paramétrica es una forma de análisis de la regresión en el que el predictor no tiene una forma predeterminada, sino que se construye de acuerdo a la información derivada de los datos. La regresión no paramétrica requiere tamaños de muestra más grandes que los de una regresión sobre la base de modelos paramétricos porque los datos deben suministrar la estructura del modelo, así como las estimaciones del modelo. (es) La régression non paramétrique est une forme d'analyse de la régression dans lequel le prédicteur, ou fonction d'estimation, ne prend pas de forme prédéterminée, mais est construit selon les informations provenant des données. La régression non paramétrique exige des tailles d'échantillons plus importantes que celles de la régression basée sur des modèles paramétriques parce que les données doivent fournir la structure du modèle ainsi que les estimations du modèle. (fr) Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric form is assumed for the relationship between predictors and dependent variable. Nonparametric regression requires larger sample sizes than regression based on parametric models because the data must supply the model structure as well as the model estimates. (en) |
dbo:thumbnail |
wiki-commons:Special:FilePath/NonparRegrGaussianKernel.png?width=300 |
dbo:wikiPageExternalLink |
http://www.cs.tut.fi/~lasip https://books.google.com/books%3Fid=hD3WBQAAQBAJ https://archive.org/details/nonparametriceco00paga http://www.hyperniche.com/ https://books.google.com/books%3Fid=7WBMrZ9umRYC https://books.google.com/books%3Fid=BI_PiWazY0YC https://books.google.com/books%3Fid=BM1ckQKCXP8C |
dbo:wikiPageID |
4536068 (xsd:integer) |
dbo:wikiPageLength |
6271 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1074918436 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Information_field_theory dbr:Convolution dbr:Semiparametric_regression dbr:Multivariate_normal_distribution dbr:Consistency_(statistics) dbr:Kernel_regression dbr:Smoothing_spline dbc:Nonparametric_regression dbr:Lasso_(statistics) dbr:Linear_regression dbr:Local_regression dbr:Parametric_model dbr:Isotonic_regression dbr:Regression_analysis dbr:K-nearest_neighbors_algorithm dbr:Empirical_Bayes dbr:Multivariate_adaptive_regression_splines dbr:Nearest-neighbor_interpolation dbr:Non-parametric_statistics dbr:Kernel_function dbr:Regression_tree dbr:Smoothing_splines dbr:Posterior_mode dbr:File:NonparRegrGaussianKernel.png |
dbp:wikiPageUsesTemplate |
dbt:Regression_bar dbt:Cite_book dbt:Commonscat dbt:Main dbt:Reflist dbt:Short_description dbt:Unreferenced_section dbt:Statistics |
dcterms:subject |
dbc:Nonparametric_regression |
gold:hypernym |
dbr:Form |
rdfs:comment |
Una regresión no paramétrica es una forma de análisis de la regresión en el que el predictor no tiene una forma predeterminada, sino que se construye de acuerdo a la información derivada de los datos. La regresión no paramétrica requiere tamaños de muestra más grandes que los de una regresión sobre la base de modelos paramétricos porque los datos deben suministrar la estructura del modelo, así como las estimaciones del modelo. (es) La régression non paramétrique est une forme d'analyse de la régression dans lequel le prédicteur, ou fonction d'estimation, ne prend pas de forme prédéterminée, mais est construit selon les informations provenant des données. La régression non paramétrique exige des tailles d'échantillons plus importantes que celles de la régression basée sur des modèles paramétriques parce que les données doivent fournir la structure du modèle ainsi que les estimations du modèle. (fr) Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric form is assumed for the relationship between predictors and dependent variable. Nonparametric regression requires larger sample sizes than regression based on parametric models because the data must supply the model structure as well as the model estimates. (en) |
rdfs:label |
Nonparametric regression (en) Regresión no paramétrica (es) Régression non paramétrique (fr) |
owl:sameAs |
freebase:Nonparametric regression wikidata:Nonparametric regression dbpedia-es:Nonparametric regression dbpedia-fr:Nonparametric regression https://global.dbpedia.org/id/3BeUT |
prov:wasDerivedFrom |
wikipedia-en:Nonparametric_regression?oldid=1074918436&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/NonparRegrGaussianKernel.png |
foaf:isPrimaryTopicOf |
wikipedia-en:Nonparametric_regression |
is dbo:knownFor of |
dbr:Bernard_Silverman |
is dbo:wikiPageDisambiguates of |
dbr:Regression |
is dbo:wikiPageRedirects of |
dbr:Non-parametric_regression dbr:Nonparametric_multiplicative_regression |
is dbo:wikiPageWikiLink of |
dbr:Passing–Bablok_regression dbr:Non-parametric_regression dbr:Bernard_Silverman dbr:Richard_Samworth dbr:Ingrid_Kristine_Glad dbr:Interval_predictor_model dbr:Preston_curve dbr:General_regression_neural_network dbr:Generalized_additive_model dbr:Semiparametric_regression dbr:Glossary_of_probability_and_statistics dbr:Nonparametric_statistics dbr:Kernel_regression dbr:Kriging dbr:Multi-armed_bandit dbr:Mathematical_statistics dbr:Additive_model dbr:Lasso_(statistics) dbr:Linear_regression dbr:William_S._Cleveland dbr:Nils_Lid_Hjort dbr:Forecasting dbr:Censored_regression_model dbr:Regression dbr:Regression_analysis dbr:Regression_discontinuity_design dbr:Jayanta_Kumar_Ghosh dbr:Backfitting_algorithm dbr:Raymond_J._Carroll dbr:Sieve_estimator dbr:Shujie_Ma dbr:Nonparametric_multiplicative_regression dbr:Urban_traffic_modeling_and_analysis dbr:List_of_statistics_articles dbr:Xihong_Lin dbr:Fixed-effect_Poisson_model dbr:Nancy_E._Heckman dbr:Polynomial_regression dbr:Outline_of_regression_analysis dbr:Outline_of_statistics |
is dbp:knownFor of |
dbr:Bernard_Silverman |
is foaf:primaryTopic of |
wikipedia-en:Nonparametric_regression |