dbo:abstract |
La dimensión fractal de empaquetado es una forma de dimensión fractal que en ciertos casos difiere de las dimensiones fractales de Minkowski-Bouligand y de Hausdorff-Besicovitch. (es) In mathematics, the packing dimension is one of a number of concepts that can be used to define the dimension of a subset of a metric space. Packing dimension is in some sense dual to Hausdorff dimension, since packing dimension is constructed by "packing" small open balls inside the given subset, whereas Hausdorff dimension is constructed by covering the given subset by such small open balls. The packing dimension was introduced by C. Tricot Jr. in 1982. (en) 數學中 ,填充维度是一種可用于定义度量空间中子集之维度的概念。某種程度上,填充維度和郝斯多夫維度是對偶的,因為填充維度是利用「填充」給定的子集來定義,而郝斯多夫維度是利用「覆蓋」給定的子集來定義。填充維度C.Tricot Jr.在1982年引入。 (zh) |
dbo:wikiPageID |
13844097 (xsd:integer) |
dbo:wikiPageLength |
5714 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1114175777 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Minkowski–Bouligand_dimension dbr:Pre-measure dbr:Countable_set dbr:Mathematics dbr:Measure_(mathematics) dbr:Dense_set dbr:Hausdorff_dimension dbr:Duality_(mathematics) dbr:Euclidean_space dbr:Dimension_function dbc:Fractals dbc:Metric_geometry dbr:Dimension dbc:Dimension_theory dbr:Metric_space dbr:Rational_number dbr:Infimum dbr:Subset dbr:Open_ball |
dbp:wikiPageUsesTemplate |
dbt:Fractals dbt:Cite_journal dbt:Short_description dbt:MathSciNet |
dct:subject |
dbc:Fractals dbc:Metric_geometry dbc:Dimension_theory |
gold:hypernym |
dbr:Number |
rdf:type |
yago:Abstraction100002137 yago:Cognition100023271 yago:Form105930736 yago:Fractal105931152 yago:PsychologicalFeature100023100 yago:Structure105726345 yago:WikicatFractals |
rdfs:comment |
La dimensión fractal de empaquetado es una forma de dimensión fractal que en ciertos casos difiere de las dimensiones fractales de Minkowski-Bouligand y de Hausdorff-Besicovitch. (es) In mathematics, the packing dimension is one of a number of concepts that can be used to define the dimension of a subset of a metric space. Packing dimension is in some sense dual to Hausdorff dimension, since packing dimension is constructed by "packing" small open balls inside the given subset, whereas Hausdorff dimension is constructed by covering the given subset by such small open balls. The packing dimension was introduced by C. Tricot Jr. in 1982. (en) 數學中 ,填充维度是一種可用于定义度量空间中子集之维度的概念。某種程度上,填充維度和郝斯多夫維度是對偶的,因為填充維度是利用「填充」給定的子集來定義,而郝斯多夫維度是利用「覆蓋」給定的子集來定義。填充維度C.Tricot Jr.在1982年引入。 (zh) |
rdfs:label |
Dimensión de empaquetado (es) Packing dimension (en) 填充維度 (zh) |
owl:sameAs |
freebase:Packing dimension yago-res:Packing dimension wikidata:Packing dimension dbpedia-es:Packing dimension dbpedia-zh:Packing dimension https://global.dbpedia.org/id/4jueX |
prov:wasDerivedFrom |
wikipedia-en:Packing_dimension?oldid=1114175777&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Packing_dimension |
is dbo:wikiPageDisambiguates of |
dbr:Dimension_(disambiguation) |
is dbo:wikiPageRedirects of |
dbr:Packing_measure |
is dbo:wikiPageWikiLink of |
dbr:Minkowski–Bouligand_dimension dbr:Measure_(mathematics) dbr:Open_set_condition dbr:Similarity_(geometry) dbr:Hausdorff_dimension dbr:Fractal_dimension dbr:Dimension_function dbr:Dimension_(disambiguation) dbr:Packing_measure |
is foaf:primaryTopic of |
wikipedia-en:Packing_dimension |