Partition of sums of squares (original) (raw)
The partition of sums of squares is a concept that permeates much of inferential statistics and descriptive statistics. More properly, it is the partitioning of sums of squared deviations or errors. Mathematically, the sum of squared deviations is an unscaled, or unadjusted measure of dispersion (also called variability). When scaled for the number of degrees of freedom, it estimates the variance, or spread of the observations about their mean value. Partitioning of the sum of squared deviations into various components allows the overall variability in a dataset to be ascribed to different types or sources of variability, with the relative importance of each being quantified by the size of each component of the overall sum of squares.
Property | Value |
---|---|
dbo:abstract | The partition of sums of squares is a concept that permeates much of inferential statistics and descriptive statistics. More properly, it is the partitioning of sums of squared deviations or errors. Mathematically, the sum of squared deviations is an unscaled, or unadjusted measure of dispersion (also called variability). When scaled for the number of degrees of freedom, it estimates the variance, or spread of the observations about their mean value. Partitioning of the sum of squared deviations into various components allows the overall variability in a dataset to be ascribed to different types or sources of variability, with the relative importance of each being quantified by the size of each component of the overall sum of squares. (en) La scomposizione della devianza è un'operazione utilizzata in statistica per calcolare, tra le altre cose, il coefficiente di determinazione e la statistica test ANOVA. Data una variabile numerica si chiama devianza la somma degli scarti quadratici dalla media campionaria ; questa quantità si può scomporre in una parte "spiegata" da una o più variabili e una parte "residua"; la somma di queste due parti è costante e corrisponde alla devianza totale. (it) |
dbo:wikiPageExternalLink | http://www.maths.qmul.ac.uk/~rab/DOEbook |
dbo:wikiPageID | 3446092 (xsd:integer) |
dbo:wikiPageLength | 8959 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1119257750 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Variance dbr:Degrees_of_freedom_(statistics) dbr:Descriptive_statistics dbr:Standard_deviation dbr:Lack-of-fit_sum_of_squares dbr:Orthogonality dbr:Orthonormal_basis dbr:Total_sum_of_squares dbr:Least_squares dbr:Euclidean_space dbr:Statistical_dispersion dbr:Pythagorean_theorem dbr:Residual_sum_of_squares dbr:Hilbert_space dbc:Analysis_of_variance dbc:Least_squares dbr:Coefficient dbr:Orthogonal_complement dbr:Orthogonal_projection dbr:Mean_squared_error dbr:Statistical_variability dbr:Expected_mean_squares dbr:Explained_sum_of_squares dbr:Orthomodular_lattice dbr:Linear_regression_model dbr:Squared_deviations dbr:Inferential_statistics dbr:Inner-product_space |
dbp:wikiPageUsesTemplate | dbt:! dbt:About dbt:Cite_book dbt:Reflist dbt:Merge_from dbt:Broader dbt:Distinguish-redirect |
dct:subject | dbc:Analysis_of_variance dbc:Least_squares |
gold:hypernym | dbr:Concept |
rdf:type | owl:Thing yago:WikicatLeastSquares yago:GeographicalArea108574314 yago:Location100027167 yago:Object100002684 yago:PhysicalEntity100001930 yago:PublicSquare108619620 yago:Region108630985 yago:YagoGeoEntity yago:YagoLegalActorGeo yago:YagoPermanentlyLocatedEntity yago:Tract108673395 |
rdfs:comment | The partition of sums of squares is a concept that permeates much of inferential statistics and descriptive statistics. More properly, it is the partitioning of sums of squared deviations or errors. Mathematically, the sum of squared deviations is an unscaled, or unadjusted measure of dispersion (also called variability). When scaled for the number of degrees of freedom, it estimates the variance, or spread of the observations about their mean value. Partitioning of the sum of squared deviations into various components allows the overall variability in a dataset to be ascribed to different types or sources of variability, with the relative importance of each being quantified by the size of each component of the overall sum of squares. (en) La scomposizione della devianza è un'operazione utilizzata in statistica per calcolare, tra le altre cose, il coefficiente di determinazione e la statistica test ANOVA. Data una variabile numerica si chiama devianza la somma degli scarti quadratici dalla media campionaria ; questa quantità si può scomporre in una parte "spiegata" da una o più variabili e una parte "residua"; la somma di queste due parti è costante e corrisponde alla devianza totale. (it) |
rdfs:label | Scomposizione della devianza (it) Partition of sums of squares (en) |
owl:differentFrom | dbr:Variance_decomposition |
owl:sameAs | freebase:Partition of sums of squares yago-res:Partition of sums of squares wikidata:Partition of sums of squares dbpedia-it:Partition of sums of squares https://global.dbpedia.org/id/4t7Q2 |
prov:wasDerivedFrom | wikipedia-en:Partition_of_sums_of_squares?oldid=1119257750&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Partition_of_sums_of_squares |
is dbo:wikiPageRedirects of | dbr:Variance_partitioning dbr:Sum_of_squares_(statistics) dbr:Partition_of_the_sum_of_squares |
is dbo:wikiPageWikiLink of | dbr:Two-way_analysis_of_variance dbr:Contrast_(statistics) dbr:Logistic_regression dbr:F-test dbr:Omnibus_test dbr:List_of_statistics_articles dbr:Multivariate_analysis_of_variance dbr:Sum_of_squares dbr:Variance_partitioning dbr:Sum_of_squares_(statistics) dbr:Partition_of_the_sum_of_squares |
is foaf:primaryTopic of | wikipedia-en:Partition_of_sums_of_squares |