Nuclear weapon design (original) (raw)
- تصميم السلاح النووي هو التنسيق الفيزيائي والكيميائي والهندسي والذي يتسبب في عملية تفجير المحتوى الفيزيائي للقنبلة النووية. هناك اربع تصاميم رئيسية للاسلحة النووية. في كل التصاميم باستثناء التصميم الرابع فان الطاقة المتفجرة من الاجهزة الموزعة للقنابل النووية تٌستمد أساسا من الانشطار النووي وليس الاندماج. (ar)
- Die Kernwaffentechnik beschäftigt sich mit Waffen, welche die Energie für eine Explosion aus Kernreaktionen – Kernspaltungen oder -verschmelzungen – beziehen. Die technische Entwicklung der Kernwaffen seit 1940 hat eine große Vielfalt unterschiedlicher Varianten hervorgebracht. Geschichte, Klassifizierung und weitere nichttechnische Aspekte werden im Artikel Kernwaffe behandelt. (de)
- Los diseños de armas nucleares son los arreglos físicos, químicos e ingenieriles que causan que el paquete físico de un arma nuclear detone. Existen tres tipos básicos de diseño. En los tres, la energía explosiva de los dispositivos desplegados se ha derivado principalmente de la fisión nuclear y no de la fusión. * Las armas de fisión nuclear fueron las primeras armas nucleares construidas y hasta el momento han sido las únicas usadas en combate. El material activo es el uranio fisible (U-235) o el plutonio (Pu-239), ensamblados explosivamente en una masa crítica reaccionando en cadena por uno de dos métodos: * Armas de fisión con detonación por disparo: una pieza de uranio fisible se dispara hacia un blanco de uranio fisible en el otro extremo del arma, de forma similar a disparar una bala por un cañón, logrando una masa crítica cuando se combinan. * Armas de fisión con detonación por implosión: una masa fisible de cualquier material (U-235, Pu-239 o una combinación) es rodeada por explosivos de gran potencia que al explotar comprimen la masa, resultando en una masa crítica. El método de implosión puede usar uranio o plutonio como combustible. El método de cañón solo usa uranio. El plutonio se considera como poco práctico para el método de cañón a causa del disparo prematuro debido a la contaminación con Pu-240 ya que su constante de tiempo para la fisión casi crítica es mucho más pequeña que la del U-235. * Las armas de fisión intensificada son una mejora sobre el diseño de implosión. La alta presión y temperatura ambiental en el centro de un arma de fisión explotando comprime y calienta una mezcla de tritio y gas de deuterio (isótopos pesados de hidrógeno). El hidrógeno se fusiona para formar helio y neutrones libres. La energía liberada de esta reacción de fusión es relativamente despreciable, pero cada neutrón comienza una nueva cadena de reacción de fisión, acelerando la fisión y reduciendo en forma importante la cantidad de material fisible que de otra forma sería desperdiciada cuando la expansión del material fisible detiene la reacción en cadena. La mejora puede más que doblar la liberación de energía de fisión del arma. * Las armas termonucleares o bombas de hidrógeno son esencialmente una cadena de armas de fisión intensificadas por fusión (no confundir con las armas de fisión mejoradas por fusión mencionadas en el punto anterior), normalmente con dos etapas en la cadena. La segunda etapa, llamada la "secundaria", es implosionada por la energía de los rayos-x de la primera etapa, llamada la "primaria". Consecuentemente, la secundaria puede ser mucho más poderosa que la primaria, sin ser más grande. La secundaria puede ser diseñada para maximizar la liberación de energía de la fusión, pero en la mayor parte de los diseños de fusión es solo empleada para sostener o mejorar la fisión, como lo es en la primaria. Se podrían agregar más etapas, pero el resultado sería un arma de gran potencia pero demasiado poderosa para servir a algún propósito plausible. Estados Unidos desplegó brevemente una bomba de tres etapas de 25 megatones, la , a comienzos de 1961. También en 1961, la Unión Soviética probó, pero no desplegó, un dispositivo de tres etapas de 50 a 100 megatones, la Bomba del Zar. Las armas de fisión pura históricamente han sido el primer tipo en ser construida por un país. Los países industrializados más grandes con arsenales nucleares bien desarrollados tienen armas termonucleares de dos etapas, que son más compactas, escalables y una opción más costo efectiva una vez que la infraestructura industrial necesaria es construida. Las innovaciones más conocidas en el diseño de armas nucleares se originaron en Estados Unidos, aunque más tarde fueron desarrolladas independientemente por otros estados; las siguientes descripciones presentan los diseños estadounidenses. En las primeras explicaciones, las armas de fisión pura eran llamadas bombas atómicas o bombas-A, un error dado que la energía proviene solo del núcleo del átomo. Las armas que usan la fusión fueron llamadas bombas de hidrógeno o bombas-H, también un error dado que la energía destructiva proviene principalmente de la fisión. Los expertos favorecen los términos nuclear y termonuclear respectivamente. El término termonuclear se refiere a las altas temperatura requeridas para iniciar la fusión. Ignora el igualmente importante factor de la presión, que era considerado secreto en la época en que el término se hizo popular. Muchos términos sobre armas nucleares son inexactos debido a su origen clasificado. (es)
- Nuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types: * pure fission weapons, the simplest and least technically demanding, were the first nuclear weapons built and have so far been the only type ever used in warfare (by the United States on Japan during WWII). * boosted fission weapons increase yield beyond that of the implosion design by using small quantities of fusion fuel to enhance the fission chain reaction. Boosting can more than double the weapon's fission energy yield. * staged thermonuclear weapons are essentially arrangements of two or more "stages", most usually two. The first stage is normally a boosted fission weapon as above (except for the earliest thermonuclear weapons, which used a pure fission weapon instead). Its detonation causes it to shine intensely with x-radiation, which illuminates and implodes the second stage filled with a large quantity of fusion fuel. This sets in motion a sequence of events which results in a thermonuclear, or fusion, burn. This process affords potential yields up to hundreds of times those of fission weapons. A fourth type, pure fusion weapons, are a theoretical possibility. Such weapons would produce far fewer radioactive byproducts than current designs, although they would release huge numbers of neutrons. Pure fission weapons historically have been the first type to be built by new nuclear powers. Large industrial states with well-developed nuclear arsenals have two-stage thermonuclear weapons, which are the most compact, scalable, and cost effective option once the necessary technical base and industrial infrastructure are built. Most known innovations in nuclear weapon design originated in the United States, although some were later developed independently by other states. In early news accounts, pure fission weapons were called atomic bombs or A-bombs and weapons involving fusion were called hydrogen bombs or H-bombs. Practitioners of nuclear policy, however, favor the terms nuclear and thermonuclear, respectively. (en)
- Desain senjata nuklir adalah pengaturan fisik, kimia, dan teknik yang menyebabkan paket fisika dari senjata nuklir untuk meledak. Terdapat tiga jenis desain dasar yang ada: * Senjata fisi murni, yang paling sederhana dan paling tidak menuntut secara teknis, adalah senjata nuklir pertama yang dibuat dan sejauh ini merupakan satu-satunya jenis yang pernah digunakan dalam tindakan perang (selama masa perang di Jepang). * Senjata fisi berpenggalak meningkatkan desain ledakan menggunakan bahan bakar fusi dalam jumlah kecil untuk meningkatkan reaksi berantai fisi. Penggalaknya bisa meningkatkan lebih dari dua kali lipat hasil energi fisi senjata. * senjata termonuklir bertahap pada dasarnya adalah pengaturan dua atau lebih "tahapan", biasanya dua. Tahap pertama selalu merupakan senjata fisi yang berpenggalak seperti di atas. Ledakannya membuatnya bersinar sangat kuat dengan radiasi x, yang menerangi dan memicu tahap kedua yang diisi dengan sejumlah besar bahan bakar fusi. Ini menggerakkan serangkaian peristiwa yang menghasilkan pembakaran termonuklir atau fusi. Proses ini berpotensi memberikan hasil hingga ratusan kali lipat dari senjata fisi. Tipe keempat, , adalah kemungkinan yang murni teoretis. Tipe ini akan menghasilkan produk sampingan radioaktif yang jauh lebih sedikit daripada desain yang ada saat ini, meskipun akan melepaskan sejumlah besar neutron. Senjata fisi murni secara historis merupakan tipe pertama yang dibangun oleh kekuatan nuklir baru. Negara-negara industri besar dengan persenjataan nuklir yang dikembangkan dengan baik memiliki senjata termonuklir dua tahap, yang merupakan opsi paling kompak, terukur, dan hemat biaya begitu basis teknis dan infrastruktur industri yang diperlukan selesai dibangun. Inovasi yang paling dikenal dalam desain senjata nuklir berasal dari Amerika Serikat, meskipun ada beberapa desain yang dikembangkan secara independen oleh negara-negara lain. Dalam laporan berita awal, senjata fisi murni disebut bom atom atau "bom-A" dan senjata yang melibatkan fusi disebut "bom hidrogen" atau "bom-H". Namun, para praktisi lebih menyukai istilah nuklir dan termonuklir. (in)
- Les deux grands types d'armes nucléaires se distinguent par leur fonctionnement : Armes à fission ou « bombes A » ; Armes à fusion, bombes thermonucléaires ou « bombes H ». Dans ces deux grandes familles, des armes plus spécialisées ont été conçues en fonction d'effets spéciaux recherchés : la plus connue est la bombe à neutrons. (fr)
- 핵무기 설계(核武器設計, 영어: nuclear weapon design)란 핵무기가 폭발하도록 하는 물리, 화학, 공학의 집적 과정이다. 핵무기 설계는 일반적으로 무기의 에너지원에 따라 두 부류로 나눌 수 있다. * 은 주요한 에너지를 핵분열에서 얻는다. 핵분열은 우라늄이나 플루토늄과 같은 무거운 원자핵이 중성자에 맞아서 보다 가벼운 원소로 쪼개어지면서 중성자 및 에너지를 생성하는 과정이다. 새로이 생성된 중성자는 또 다른 원자핵의 분열을 야기하며, 이러한 연속적인 과정은 핵 연쇄 반응으로 불리며, 엄청난 양의 에너지를 방출한다. 이 폭탄은 예전부터 원자 폭탄으로 불리어 왔다. * 은 주요한 에너지를 핵융합에서 얻는다. 핵융합은 중수소나 리튬과 같은 가벼운 원자핵이 보다 무거운 원자핵으로 결합하면서 많은 양의 에너지를 방출하는 현상이다. 핵융합 폭탄은 사용되는 연료때문에 수소 폭탄으로도 불리며, 연쇄 반응이 일어나기 위해 필요한 높은 온도로 인해 열핵폭탄으로도 불린다. 이 두 형태의 무기의 구분은 실제로는 불명확하며, 이는 거의 모든 현대 무기에는 두 가지의 특성이 산재해 있기 때문이다. 즉 작은 핵분열 폭탄이 핵융합 이전에 필요한 높은 온도 및 압력을 얻기 위해 사용된다는 것이다. 또한, 핵융합 물질 역시 핵분열 장치의 내부에 존재할 수 있으며, 이러한 물질은 추가적인 중성자를 생성해 핵분열 반응의 효율성을 높여주기도 한다. 대부분의 핵융합 무기는 에너지 생성분의 상당량(종종 총 생산량의 거의 반에 가깝기도 한 양)을 핵융합 반응으로 시작된 마지막 단계의 핵분열을 통해 얻기도 한다. 핵분열 및 핵융합 무기의 공통된 특징은 원자핵의 변형을 통해 에너지를 방출한다는 것이며, 이러한 특징을 가장 잘 나타내는 용어는 바로 핵폭탄이다. 중성자 폭탄, 코발트 폭탄(en:Cobalt bomb), (en:salted bomb)과 같은 특징적인 핵폭탄도 존재한다. (ko)
- Desenhos de armas nucleares são arranjos ou combinações de natureza física, química e de engenharia que permitem que o pacote físico de uma arma nuclear exploda. Há três tipos básicos de desenho. Em todos, a energia explosiva de engenhos activados é derivada essencialmente de fissão nuclear, não de fusão. * Armas de fissão puras foram as primeiras armas nucleares construídas e foram as únicas, até ao momento, a serem usadas em tempo de guerra. O material activo é urânio (U-235) ou plutónio (Pu-239), montado explosivamente numa massa crítica de reacção em cadeia por um de dois métodos: * Montagem balística, na qual uma massa de urânio físsil é disparada contra um alvo de urânio (também físsil) no extremo da arma, similar ao disparo de uma bala pelo cano de uma arma (plutónio pode ser, teoricamente, usado neste desenho; no entanto, provou-se ser impraticável). * Montagem implosiva, na qual uma massa físsil de um dos materiais referidos (U-235, Pu-239, ou uma combinação de ambos) é rodeada por uma carga explosiva modelada que comprime a massa, resultando em criticidade. * Arma de fissão intensificada constitui um melhoramento do desenho implosivo. O ambiente de altas pressões e temperaturas no centro da explosão de uma bomba de fissão comprime e aquece uma mistura de gases de trítio e deutério (isótopos pesados de hidrogénio). O hidrogénio funde-se, formando hélio e neutrões livres. A energia liberada pelas reacções de fusão é relativamente negligenciável, mas cada neutrão liberado inicia, por sua vez, uma nova reacção de fusão em cadeia, reduzindo substancialmente a quantidade de material físsil que, de outra forma, seria gasto. Este mecanismo de intensificação pode representar uma duplicação da energia liberada por fissão. * Armas termonucleares bifásicas são, essencialmente, uma cadeia de armas de fissão intensificada, normalmente com apenas duas fases na referida cadeia. A segunda fase, denominada "secundário", é implodida por energia de raios X a partir da primeira fase, denominada "primário". Esta implosão por radiação é muito mais eficaz que a implosão do primário, de alta potência. Consequentemente, o secundário pode ser várias vezes mais potente do que primário sem, no entanto, ser maior. O secundário pode ser desenhada para maximizar a liberação de energia de fusão mas, na maioria dos desenhos, é apenas utilizada para conduzir ou melhorar a fissão, como no caso do primário. Mais fases podem ser adicionadas, embora o resultado seja uma arma de megatoneladas, potente demais para ser utilizada. Armas de fissão puras constituíram, historicamente, o primeiro tipo a ser construído por uma nação. Países com elevados níveis de industrialização e com arsenais nucleares desenvolvidos, possuem armas termonucleares bifásicas, as quais são as mais compactas, escaláveis e com melhor relação resultado/preço, assim que esteja disponível a infraestrutura industrial necessária para as construir. Todas as inovações em desenho de armas nucleares foram originadas nos EUA, embora alguns desenhos tenham sido desenvolvidos, mais tarde, por outros Estados; as descrições seguintes dizem respeito a desenhos norte-americanos. Nos primeiros serviços noticiosos, as armas de fissão puras eram chamadas de "bombas atómicas" ou "bombas-A", um termo desadequado já que a energia vem unicamente do núcleo do átomo. Armas que envolviam fusão eram chamadas de "bombas de hidrogénio" ou "bombas-H", denominações igualmente desadequadas já que a sua energia destrutiva provinha principalmente da fissão nuclear. Conhecedores da tecnologia favoreceram os termos "nuclear" e "termonuclear", respectivamente. O termo "termonuclear" refere-se às altas temperaturas necessárias ao início da fusão, ignorando o igualmente importante factor da pressão, considerado secreto na época em que o termo se tornou corrente. Muitos termos relacionados com tecnologia de armas nucleares são inexactos devido a terem tido origem em ambientes confidenciais. Alguns são termos em código absurdos, tais como "alarme de relógio". (pt)
- 核武器设计方案是指如何设计核武器,使之能够起爆引起核爆炸。设计核武器需要考虑物理上、化学上以及工程上的各种因素。核武器基本上可以分为三种类型,而这三种类型核武器爆炸时的主要能量来源在一般情况下都是核裂变,而不是核聚变。 * 纯裂变武器:这是第一代的核武器的设计,也是唯一一种曾经在战争中使用的类型。这种核武器中使用的核装药为铀-235(U-235)、钚-239(Pu-239),在爆炸时将核装药挤压在一起,使其达到产生链式反应的临界质量。根据挤压核装药的方式,这种设计方案又可以分为两种: * 枪式: 在这种方案中,一部分裂变物质在常规炸药的作用下射向另一部分裂变物质,就像子弹打靶一样,从而使裂变物质达到临界质量。 * 内爆式: 在这种方案中,常规高爆炸药包裹着裂变物质(可能是U-235,Pu-239,或二者混合物)。当炸药爆炸时,向内挤压裂变物质,从而使裂变物质达到临界质量。 内爆式的核弹可以使用铀或者钚作为核装药,而枪式核弹只使用铀。这是由于钚-240会污染核装药,并造成提前起爆,使得其余大量尚未进行裂变的材料被炸开,从而降低了核弹的效率。 * 聚变增强裂变弹 是内爆式核弹的一种改进。由于核裂变物质会被炸开从而停止链式反应,很多裂变物质都被浪费了。这种核弹在爆炸前需要向核装药的中心注入氘和氚,在核爆炸时,裂变核装药中心的高温高压环境可以使氘氚的混合气体发生聚变反应,产生了氦和中子。虽然核聚变所产生的能量与裂变产生的能量相比基本上可以忽略,但是它产生的每一个中子都将触发新的核裂变的链式反应,从而加速核裂变,也极大的减少了可能被浪费的裂变物质。增强核弹释放的能量可能是原来的两倍甚至更多。 * 二阶段热核武器 实际上是一种裂变增强聚变弹(注意不要与前項所述混淆)。这种核武器由两种核弹组成。爆炸时,次级核弹将被初级核弹在爆炸时产生的X射线的能量引爆。这种辐射内爆要比前面提到的使用高爆炸药引爆第一阶段的方式效率更高。因此,次级核弹释放的能量要比初级核弹大很多倍。次级核弹可以设计为最大化聚变能量的释放,但是实际上在大多数设计中,核聚变仅仅是用来驱动或者提高裂变的效率。我们可以加入更多的阶段,使得到的炸弹能量达到数百万吨当量甚至更高,但是威力过于巨大反而丧失了实际用途 (美国于1961年装备了三阶段的2500万吨当量的核弹即B41型核弹,而苏联设计并测试了一个三阶段的5000万吨级核弹)。 大多数核武器技术都是由美国发展完成,尽管其中的一些技术后来由其他核大国独立完成。以下的描述都是美国设计的特征。 早期的媒体一般都将纯裂变核弹称为原子弹,由于核爆炸的能量实际上来自于原子核而非原子,原子弹这个名字并不恰当。而带有聚变的核弹一般都称为氢弹,但是由于所谓氢弹核爆炸能量的主要来源仍然是核裂变,这个名字依然不够恰当。业内人士一般将这两种类型的核武器称为核弹和热核武器。热核武器的名字来源于核聚变一般都需要高温,但是它没有指出核聚变的另一个条件——高压,而这个条件是研制热核武器时的一个秘密。由于需要保密,很多核武器的术语都不甚精确。 (zh)
- https://fas.org/nuke/
- https://web.archive.org/web/20150329105730/http:/fas.org/nuke/intro/nuke/effects.htm
- http://www.uscoldwar.com/
- http://www.wilsoncenter.org/nuclear-history-documents/
- http://nuclearweaponarchive.org/
- http://www.atomicarchive.com/Docs/SmythReport/index.shtml
- http://www.deepspace.ucsb.edu/wp-content/uploads/2013/01/Effects-of-Nuclear-Weapons-1977-3rd-edition-complete.pdf
- http://www.globalsecurity.org/wmd/intro/a-bomb.htm
- http://nuclearweaponarchive.org/Library/Teller.html
- http://nuclearweaponarchive.org/Nwfaq/Nfaq1.html%23nfaq1.6
- http://nuclearweaponarchive.org/Nwfaq/Nfaq4.html
- https://fas.org/
- https://fas.org/irp/threat/mctl98-2/mctl98-2.pdf
- https://fas.org/nuke/intro/nuke/7906/index.html
- https://fas.org/sgp/eprint/morland.html
- https://fas.org/sgp/othergov/doe/rdd-7.html
- https://web.archive.org/web/20080226054314/http:/alsos.wlu.edu/qsearch.aspx%3Fbrowse=science%2FNuclear+Weapons+Design
- https://web.archive.org/web/20150418011842/http:/fas.org/nuke/intro/nuke/7906/index.html
- https://web.archive.org/web/20160303175040/http:/www.deepspace.ucsb.edu/wp-content/uploads/2013/01/Effects-of-Nuclear-Weapons-1977-3rd-edition-complete.pdf
- https://web.archive.org/web/20161230020259/http:/www.uscoldwar.com/
- https://web.archive.org/web/20170421015824/http:/www.atomicarchive.com/Docs/SmythReport/index.shtml
- dbr:Cadmium
- dbr:Calutron
- dbr:Castle_Bravo
- dbr:Project_Excalibur
- dbr:Prolate_spheroid
- dbr:Pu-239
- dbr:Robert_Serber
- dbr:Samuel_T._Cohen
- dbr:Neutron_moderator
- dbr:Beryllium
- dbr:Beta_decay
- dbr:Bikini_Atoll
- dbr:Black-body_radiation
- dbr:Boron
- dbr:Davy_Crockett_(nuclear_device)
- dbr:Deuterium
- dbr:Allotropes_of_plutonium
- dbr:Alloy
- dbr:Antimatter-catalyzed_nuclear_pulse_propulsion
- dbr:Little_Boy
- dbr:Pechora–Kama_Canal
- dbr:Richard_Rhodes
- dbr:United_States
- dbr:University_of_California,_Berkeley
- dbr:Uranium-235
- dbr:Uranium-238
- dbr:Uranium_enrichment
- dbr:Uranium_hydride_bomb
- dbr:Inertia
- dbr:Inertial_confinement_fusion
- dbr:Insertion_time
- dbr:Intercontinental_ballistic_missile
- dbr:Intermediate-range_ballistic_missile
- dbr:Multiple_independently_targetable_reentry_vehicle
- dbr:Polonium
- dbr:Project_Orion_(nuclear_propulsion)
- dbr:Particle_accelerator
- dbr:Light-water_reactor
- dbr:List_of_military_nuclear_accidents
- dbr:Nuclear_shaped_charge
- dbr:Radiant_energy
- dbr:Pure_fusion_weapon
- dbr:Stockpile_stewardship
- dbr:SM-65_Atlas
- dbr:Lowell_Wood
- dbr:Nova_(laser)
- dbr:Nuclear_reactor
- dbr:On_the_Beach_(novel)
- dbr:Cobalt-60
- dbr:Cold_War
- dbr:Edward_Teller
- dbr:Emilio_Segrè
- dbr:Enewetak_Atoll
- dbr:Fusion_power
- dbr:Gallium
- dbr:Gold
- dbr:Mordechai_Vanunu
- dbr:Cordite
- dbr:Corrosion
- dbr:Critical_mass
- dbr:Criticality_accident
- dbr:The_gadget
- dbr:Thermonuclear_weapon
- dbc:Nuclear_weapons
- dbr:Los_Alamos_National_Laboratory
- dbr:Manhattan_Project
- dbr:Smyth_Report
- dbr:Stanislaw_Ulam
- dbr:Strontium
- dbr:Composite_material
- dbr:Density
- dbr:Peaceful_nuclear_explosion
- dbr:Pit_(nuclear_weapon)
- dbr:Swan_(nuclear_primary)
- dbr:Tamper_(nuclear_weapons)
- dbr:Mark_5_nuclear_bomb
- dbr:RaLa_Experiment
- dbr:Threshold_Test_Ban_Treaty
- dbr:Trinity_(nuclear_test)
- dbr:Tritium
- dbr:Tsar_Bomba
- dbr:Tungsten_carbide
- dbr:W48
- dbr:W79
- dbr:W82
- dbr:W87
- dbr:W88
- dbr:Helium
- dbr:Ion
- dbr:Early_warning_radar
- dbr:File:Gun-type_fission_weapon_en-labels_thin_lines.svg
- dbr:File:Implosion_bomb_animated.gif
- dbr:W38
- dbr:2017_North_Korean_nuclear_test
- dbr:Access_control
- dbr:Aiken,_South_Carolina
- dbr:Alpha_particle
- dbr:Aluminium
- dbr:Daigo_Fukuryū_Maru
- dbr:Dr._Strangelove
- dbr:Fat_Man
- dbr:Ball_(bearing)
- dbr:Nickel
- dbr:Nickel_tetracarbonyl
- dbr:Nuclear_weapon
- dbr:Chuck_Hansen
- dbc:Weapon_design
- dbr:Fogbank
- dbr:Hanford_Site
- dbr:Isotopes_of_lithium
- dbr:Submarine-launched_ballistic_missile
- dbr:Titan_(rocket_family)
- dbr:Vanadium
- dbr:Nuclear_fratricide
- dbr:Neutron_reflector
- dbr:Protégé
- dbr:Henry_DeWolf_Smyth
- dbr:Highly_enriched_uranium
- dbr:Ivy_Mike
- dbr:J._Robert_Oppenheimer
- dbr:Japan
- dbr:Ted_Taylor_(physicist)
- dbr:Teller-Ulam_design
- dbr:Coulomb_collision
- dbr:Tennessee
- dbr:File:IvyMike2.jpg
- dbr:Fissile
- dbr:Fizzle_(nuclear_test)
- dbr:Asteroid_impact_avoidance
- dbr:Absorption_cross_section
- dbr:Aerogel
- dbr:Jupiter
- dbr:Lawrence_Livermore_National_Laboratory
- dbr:Hohlraum
- dbr:Nuclear_weapon_yield
- dbr:Yucca_Flat
- dbr:B41_nuclear_bomb
- dbr:Mark_4_nuclear_bomb
- dbr:Boosted_fission_weapon
- dbc:Nuclear_weapon_design
- dbr:Plutonium
- dbr:South_Carolina
- dbr:Spontaneous_fission
- dbr:Freedom_of_information
- dbr:Greenhouse_Item
- dbr:Teller-Ulam
- dbr:Metal
- dbr:National_Ignition_Facility
- dbr:Neutron
- dbr:Nevada_Test_Site
- dbr:Nevil_Shute
- dbr:Oak_Ridge,_Tennessee
- dbr:On_the_Beach_(1959_film)
- dbr:Operation_Castle
- dbr:Operation_Crossroads
- dbr:Operation_Greenhouse
- dbr:Operation_Hardtack_I
- dbr:Operation_Ivy
- dbr:Operation_Redwing
- dbr:Operation_Sandstone
- dbr:Candlestick
- dbr:Castle_Koon
- dbr:Castle_Union
- dbr:World_War_II
- dbr:Xenon
- dbr:Yellow_Sun_(nuclear_weapon)
- dbr:Neutron_capture
- dbr:Nuclear_chain_reaction
- dbr:Los_Alamos_Primer
- dbr:Mean_free_path
- dbr:Salvo
- dbr:Savannah_River_Site
- dbr:Electron_volt
- dbr:Urchin_(detonator)
- dbr:Valence_(chemistry)
- dbr:Neutron_activation
- dbr:Neutron_generator
- dbr:Exploding-bridgewire_detonator
- dbr:Comet_Shoemaker-Levy_9
- dbr:Gun-type_fission_weapon
- dbr:Y-12_National_Security_Complex
- dbr:W47
- dbr:W74
- dbr:Violet_Club
- dbr:W54
- dbr:Robin_primary
- dbr:Thin_Man_nuclear_bomb
- dbr:Trinity_test
- dbr:Predetonation
- dbr:Lawrence_Berkeley_Laboratory
- dbr:Suitcase_nuke
- dbr:Mass_spectrometer
- dbr:Pu-240
- dbr:Fissionable
- dbr:Los_Alamos_Laboratory
- dbr:Johnston_Island
- dbr:Plutonium-gallium_alloy
- dbr:Plutonium_dioxide
- dbr:Plutonium_pit
- dbr:Ballistic_missile_defense
- dbr:Strong_nuclear_force
- dbr:Wikt:fudge_factor
- dbr:File:Nevada_Test_Site_craters.jpg
- dbr:File:Deuterium-tritium_fusion.svg
- dbr:File:X-Ray-Image-HE-Lens-Test-Shot.gif
- dbr:File:Implosion_Nuclear_weapon.svg
- dbr:File:Bassoon_Prime.jpg
- dbr:File:Castle_Bravo_Shrimp_composite.png
- dbr:File:Linear_implosion_schematic.svg
- dbr:File:Nuclear_Weapon_Miniaturization.png
- dbr:File:One-Point_Safety_Test.svg
- dbr:File:Steel_balls.png
- dbr:File:TellerUlamAblation.png
- dbr:File:The_gadget_in_the_Trinity_Test_Site_tower_(1945).jpg
- dbr:File:U.S._Swan_Device.svg
- 2015-04-18 (xsd:date)
- 2016-03-03 (xsd:date)
- 2016-12-30 (xsd:date)
- 2017-04-21 (xsd:date)
- June 2019 (en)
- dbt:Anchor
- dbt:Better_source_needed
- dbt:Citation_needed
- dbt:Commons_category
- dbt:Convert
- dbt:Globalize
- dbt:ISBN
- dbt:Main
- dbt:More_citations_needed
- dbt:Ordered_list
- dbt:Refbegin
- dbt:Refend
- dbt:Reflist
- dbt:See_also
- dbt:Sfn
- dbt:Short_description
- dbt:Unreferenced_section
- dbt:Webarchive
- dbt:Refpage
- dbt:Free-content_attribution
- dbt:Nuclear_weapons
- dbt:Nuclear_technology
- تصميم السلاح النووي هو التنسيق الفيزيائي والكيميائي والهندسي والذي يتسبب في عملية تفجير المحتوى الفيزيائي للقنبلة النووية. هناك اربع تصاميم رئيسية للاسلحة النووية. في كل التصاميم باستثناء التصميم الرابع فان الطاقة المتفجرة من الاجهزة الموزعة للقنابل النووية تٌستمد أساسا من الانشطار النووي وليس الاندماج. (ar)
- Die Kernwaffentechnik beschäftigt sich mit Waffen, welche die Energie für eine Explosion aus Kernreaktionen – Kernspaltungen oder -verschmelzungen – beziehen. Die technische Entwicklung der Kernwaffen seit 1940 hat eine große Vielfalt unterschiedlicher Varianten hervorgebracht. Geschichte, Klassifizierung und weitere nichttechnische Aspekte werden im Artikel Kernwaffe behandelt. (de)
- Les deux grands types d'armes nucléaires se distinguent par leur fonctionnement : Armes à fission ou « bombes A » ; Armes à fusion, bombes thermonucléaires ou « bombes H ». Dans ces deux grandes familles, des armes plus spécialisées ont été conçues en fonction d'effets spéciaux recherchés : la plus connue est la bombe à neutrons. (fr)
- Los diseños de armas nucleares son los arreglos físicos, químicos e ingenieriles que causan que el paquete físico de un arma nuclear detone. Existen tres tipos básicos de diseño. En los tres, la energía explosiva de los dispositivos desplegados se ha derivado principalmente de la fisión nuclear y no de la fusión. Las innovaciones más conocidas en el diseño de armas nucleares se originaron en Estados Unidos, aunque más tarde fueron desarrolladas independientemente por otros estados; las siguientes descripciones presentan los diseños estadounidenses. (es)
- Nuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types: * pure fission weapons, the simplest and least technically demanding, were the first nuclear weapons built and have so far been the only type ever used in warfare (by the United States on Japan during WWII). * boosted fission weapons increase yield beyond that of the implosion design by using small quantities of fusion fuel to enhance the fission chain reaction. Boosting can more than double the weapon's fission energy yield. * staged thermonuclear weapons are essentially arrangements of two or more "stages", most usually two. The first stage is normally a boosted fission weapon as above (except for the e (en)
- Desain senjata nuklir adalah pengaturan fisik, kimia, dan teknik yang menyebabkan paket fisika dari senjata nuklir untuk meledak. Terdapat tiga jenis desain dasar yang ada: * Senjata fisi murni, yang paling sederhana dan paling tidak menuntut secara teknis, adalah senjata nuklir pertama yang dibuat dan sejauh ini merupakan satu-satunya jenis yang pernah digunakan dalam tindakan perang (selama masa perang di Jepang). * Senjata fisi berpenggalak meningkatkan desain ledakan menggunakan bahan bakar fusi dalam jumlah kecil untuk meningkatkan reaksi berantai fisi. Penggalaknya bisa meningkatkan lebih dari dua kali lipat hasil energi fisi senjata. * senjata termonuklir bertahap pada dasarnya adalah pengaturan dua atau lebih "tahapan", biasanya dua. Tahap pertama selalu merupakan senjata fisi (in)
- 핵무기 설계(核武器設計, 영어: nuclear weapon design)란 핵무기가 폭발하도록 하는 물리, 화학, 공학의 집적 과정이다. 핵무기 설계는 일반적으로 무기의 에너지원에 따라 두 부류로 나눌 수 있다. * 은 주요한 에너지를 핵분열에서 얻는다. 핵분열은 우라늄이나 플루토늄과 같은 무거운 원자핵이 중성자에 맞아서 보다 가벼운 원소로 쪼개어지면서 중성자 및 에너지를 생성하는 과정이다. 새로이 생성된 중성자는 또 다른 원자핵의 분열을 야기하며, 이러한 연속적인 과정은 핵 연쇄 반응으로 불리며, 엄청난 양의 에너지를 방출한다. 이 폭탄은 예전부터 원자 폭탄으로 불리어 왔다. * 은 주요한 에너지를 핵융합에서 얻는다. 핵융합은 중수소나 리튬과 같은 가벼운 원자핵이 보다 무거운 원자핵으로 결합하면서 많은 양의 에너지를 방출하는 현상이다. 핵융합 폭탄은 사용되는 연료때문에 수소 폭탄으로도 불리며, 연쇄 반응이 일어나기 위해 필요한 높은 온도로 인해 열핵폭탄으로도 불린다. 중성자 폭탄, 코발트 폭탄(en:Cobalt bomb), (en:salted bomb)과 같은 특징적인 핵폭탄도 존재한다. (ko)
- Desenhos de armas nucleares são arranjos ou combinações de natureza física, química e de engenharia que permitem que o pacote físico de uma arma nuclear exploda. Há três tipos básicos de desenho. Em todos, a energia explosiva de engenhos activados é derivada essencialmente de fissão nuclear, não de fusão. Todas as inovações em desenho de armas nucleares foram originadas nos EUA, embora alguns desenhos tenham sido desenvolvidos, mais tarde, por outros Estados; as descrições seguintes dizem respeito a desenhos norte-americanos. (pt)
- 核武器设计方案是指如何设计核武器,使之能够起爆引起核爆炸。设计核武器需要考虑物理上、化学上以及工程上的各种因素。核武器基本上可以分为三种类型,而这三种类型核武器爆炸时的主要能量来源在一般情况下都是核裂变,而不是核聚变。 * 纯裂变武器:这是第一代的核武器的设计,也是唯一一种曾经在战争中使用的类型。这种核武器中使用的核装药为铀-235(U-235)、钚-239(Pu-239),在爆炸时将核装药挤压在一起,使其达到产生链式反应的临界质量。根据挤压核装药的方式,这种设计方案又可以分为两种: * 枪式: 在这种方案中,一部分裂变物质在常规炸药的作用下射向另一部分裂变物质,就像子弹打靶一样,从而使裂变物质达到临界质量。 * 内爆式: 在这种方案中,常规高爆炸药包裹着裂变物质(可能是U-235,Pu-239,或二者混合物)。当炸药爆炸时,向内挤压裂变物质,从而使裂变物质达到临界质量。 内爆式的核弹可以使用铀或者钚作为核装药,而枪式核弹只使用铀。这是由于钚-240会污染核装药,并造成提前起爆,使得其余大量尚未进行裂变的材料被炸开,从而降低了核弹的效率。 大多数核武器技术都是由美国发展完成,尽管其中的一些技术后来由其他核大国独立完成。以下的描述都是美国设计的特征。 (zh)
is dbo:wikiPageRedirects of
- dbr:Nuclear_weapons_design
- dbr:Physics_package
- dbr:Alarm_Clock_(nuclear_device)
- dbr:Autocatalytic_criticality
- dbr:Implosion-type_nuclear_weapon
- dbr:Two-point_implosion
- dbr:Fission_weapon
- dbr:Fusion_weapon
- dbr:Nuclear_weapons_research
- dbr:Implosion_bomb
- dbr:Implosion_nuclear_weapon
- dbr:High_energy_weapon_design
- dbr:Nuclear_implosion
- dbr:Pure_fission
- dbr:Pure_fission_weapon
- dbr:Generation_of_nuclear_weapons
- dbr:Thermonuclear_weapon_design
is rdfs:seeAlso of