dbo:abstract |
In mathematics, the Poincaré–Miranda theorem is a generalization of the intermediate value theorem, from a single function in a single dimension, to n functions in n dimensions. It says as follows: Consider continuous functions of variables, . Assume that for each variable , the function is constantly nonpositive when and constantly nonnegative when . Then there is a point in the -dimensional cube in which all functions are simultaneously equal to . The theorem is named after Henri Poincaré, who conjectured it in 1883, and Carlo Miranda, who in 1940 showed that it is equivalent to the Brouwer fixed-point theorem. (en) |
dbo:thumbnail |
wiki-commons:Special:FilePath/PoincareMiranda.png?width=300 |
dbo:wikiPageExternalLink |
http://scholarship.claremont.edu/hmc_theses/47/ |
dbo:wikiPageID |
46736435 (xsd:integer) |
dbo:wikiPageLength |
4256 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1109450625 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Carlo_Miranda dbr:Cube dbr:Coordinates dbr:Corollary dbr:Translation_of_axes dbr:Domain_of_a_function dbc:Topology dbr:Brouwer_fixed-point_theorem dbr:Henri_Poincaré dbc:Real_analysis dbr:Codomain dbr:The_American_Mathematical_Monthly dbr:Intermediate_value_theorem dbr:Bollettino_dell'Unione_Matematica_Italiana dbr:Springer-Verlag |
dbp:align |
right (en) |
dbp:caption |
A graphical representation of Poincaré–Miranda theorem for (en) |
dbp:captionPosition |
bottom (en) |
dbp:triangle |
triangle (en) |
dbp:width |
350 (xsd:integer) |
dbp:wikiPageUsesTemplate |
dbt:= dbt:Citation dbt:Cite_web dbt:Math dbt:Mvar dbt:Reflist dbt:Short_description dbt:Sub dbt:Sup dbt:Plain_image_with_caption |
dct:subject |
dbc:Topology dbc:Real_analysis |
rdfs:comment |
In mathematics, the Poincaré–Miranda theorem is a generalization of the intermediate value theorem, from a single function in a single dimension, to n functions in n dimensions. It says as follows: Consider continuous functions of variables, . Assume that for each variable , the function is constantly nonpositive when and constantly nonnegative when . Then there is a point in the -dimensional cube in which all functions are simultaneously equal to . (en) |
rdfs:label |
Poincaré–Miranda theorem (en) |
owl:sameAs |
freebase:Poincaré–Miranda theorem wikidata:Poincaré–Miranda theorem https://global.dbpedia.org/id/2MpU3 |
prov:wasDerivedFrom |
wikipedia-en:Poincaré–Miranda_theorem?oldid=1109450625&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/PoincareMiranda.png |
foaf:isPrimaryTopicOf |
wikipedia-en:Poincaré–Miranda_theorem |
is dbo:knownFor of |
dbr:Carlo_Miranda |
is dbo:wikiPageRedirects of |
dbr:Poincare-Miranda_theorem dbr:Poincare–Miranda_theorem dbr:Poincaré-Miranda_theorem |
is dbo:wikiPageWikiLink of |
dbr:Carlo_Miranda dbr:List_of_things_named_after_Henri_Poincaré dbr:Brouwer_fixed-point_theorem dbr:Discrete_fixed-point_theorem dbr:Henri_Poincaré dbr:Poincare-Miranda_theorem dbr:Sperner's_lemma dbr:Poincare–Miranda_theorem dbr:Poincaré-Miranda_theorem |
is foaf:primaryTopic of |
wikipedia-en:Poincaré–Miranda_theorem |