dbo:abstract |
In algebra, a purely inseparable extension of fields is an extension k ⊆ K of fields of characteristic p > 0 such that every element of K is a root of an equation of the form xq = a, with q a power of p and a in k. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions. (en) Dans la théorie des extensions de corps, à l'opposé des extensions algébriques séparables, il existe les extensions radicielles. C'est un phénomène spécifique à la caractéristique positive et qui apparaît naturellement avec les corps de fonctions en caractéristique positive. (fr) 代数学において、体の純非分離拡大 (purely inseparable extension) は標数 p > 0 の体の拡大 k ⊆ K であって K のすべての元が q を p のベキ、a を k の元として xq = a の形の方程式の根であるようなものである。純非分離拡大はときどき radicial extension と呼ばれるが、名前の似たより一般的な概念である (radical extension) と混同してはならない。 (ja) |
dbo:wikiPageID |
4770099 (xsd:integer) |
dbo:wikiPageLength |
8666 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1094397370 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:American_Journal_of_Mathematics dbr:Restricted_Lie_algebra dbr:Annals_of_Mathematics dbr:Jacobson–Bourbaki_theorem dbr:Elliptic_curve dbr:Function_field_of_an_algebraic_variety dbr:Algebraic_geometry dbr:Algebraic_variety dbr:American_Mathematical_Society dbc:Field_(mathematics) dbr:Bulletin_of_the_American_Mathematical_Society dbr:Field_extension dbr:Radical_extension dbr:Separable_polynomial dbr:Transactions_of_the_American_Mathematical_Society |
dbp:wikiPageUsesTemplate |
dbt:Citation dbt:Harv dbt:Harvtxt dbt:Reflist dbt:Harvs |
dct:subject |
dbc:Field_(mathematics) |
gold:hypernym |
dbr:K |
rdf:type |
dbo:School |
rdfs:comment |
In algebra, a purely inseparable extension of fields is an extension k ⊆ K of fields of characteristic p > 0 such that every element of K is a root of an equation of the form xq = a, with q a power of p and a in k. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions. (en) Dans la théorie des extensions de corps, à l'opposé des extensions algébriques séparables, il existe les extensions radicielles. C'est un phénomène spécifique à la caractéristique positive et qui apparaît naturellement avec les corps de fonctions en caractéristique positive. (fr) 代数学において、体の純非分離拡大 (purely inseparable extension) は標数 p > 0 の体の拡大 k ⊆ K であって K のすべての元が q を p のベキ、a を k の元として xq = a の形の方程式の根であるようなものである。純非分離拡大はときどき radicial extension と呼ばれるが、名前の似たより一般的な概念である (radical extension) と混同してはならない。 (ja) |
rdfs:label |
Extension radicielle (fr) 純非分離拡大 (ja) Purely inseparable extension (en) |
owl:sameAs |
freebase:Purely inseparable extension wikidata:Purely inseparable extension dbpedia-fr:Purely inseparable extension dbpedia-ja:Purely inseparable extension https://global.dbpedia.org/id/4tnym |
prov:wasDerivedFrom |
wikipedia-en:Purely_inseparable_extension?oldid=1094397370&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Purely_inseparable_extension |
is dbo:wikiPageRedirects of |
dbr:Purely_inseparable dbr:Radicial_extension dbr:Purely_inseparable_extensions dbr:Purely_inseparable_field_extension dbr:Modular_extension |
is dbo:wikiPageWikiLink of |
dbr:Restricted_Lie_algebra dbr:Jacobson–Bourbaki_theorem dbr:Radicial_morphism dbr:Murray_Gerstenhaber dbr:Artin–Schreier_theory dbr:Purely_inseparable dbr:Separable_extension dbr:Unibranch_local_ring dbr:Radicial_extension dbr:Purely_inseparable_extensions dbr:Purely_inseparable_field_extension dbr:Modular_extension |
is foaf:primaryTopic of |
wikipedia-en:Purely_inseparable_extension |