Schröder–Hipparchus number (original) (raw)

About DBpedia

In combinatorics, the Schröder–Hipparchus numbers form an integer sequence that can be used to count the number of plane trees with a given set of leaves, the number of ways of inserting parentheses into a sequence, and the number of ways of dissecting a convex polygon into smaller polygons by inserting diagonals. These numbers begin 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, ... (sequence in the OEIS).

thumbnail

Property Value
dbo:abstract En théorie des nombres, les nombres de Schröder-Hipparque forment une suite d'entiers qui servent à compter les arbres planaires avec un ensemble donné de feuilles, les insertions de parenthèses dans une suite, et le nombre de façons de découper un polygone convexe en polygones plus petits par l'insertion de diagonales. Cette suite de nombres commence par 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859,... (c'est la suite de l'OEIS). Ils sont aussi appelés nombres super-Catalans, petits nombres de Schröder, ou nombres d'Hipparque, d'après Eugène Charles Catalan et ses nombres de Catalan, Ernst Schröder et ses (grands) nombres de Schröder très voisins, et d'après le mathématicien et astronome grec Hipparque qui, selon Plutarque, connaissait certainement ces nombres. (fr) In combinatorics, the Schröder–Hipparchus numbers form an integer sequence that can be used to count the number of plane trees with a given set of leaves, the number of ways of inserting parentheses into a sequence, and the number of ways of dissecting a convex polygon into smaller polygons by inserting diagonals. These numbers begin 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, ... (sequence in the OEIS). They are also called the super-Catalan numbers, the little Schröder numbers, or the Hipparchus numbers, after Eugène Charles Catalan and his Catalan numbers, Ernst Schröder and the closely related Schröder numbers, and the ancient Greek mathematician Hipparchus who appears from evidence in Plutarch to have known of these numbers. (en) In matematica, data una griglia quadrata di dimensione nel 1° quadrante di un sistema di riferimento cartesiano, il numero di Schröder-Ipparco, , descrive il numero di cammini possibili per arrivare dal punto di coordinate al punto di coordinate , ammettendo di potersi muovere soltanto in verticale e in orizzontale o in diagonale verso destra e senza che il cammino oltrepassi mai la diagonale data dalla retta di equazione o abbia passi che corrono lungo di essa. I numeri di Schröder-Ipparco sono detti anche piccoli numeri di Schröder e differiscono dai "grandi numeri di Schröder" per il fatto che questi ultimi tengono anche conto dei cammini che non aderiscono all'ultima delle condizioni sopra elencate. La successione di tali numeri interi, che prendono il nome dal matematico tedesco Ernst Schröder e dall'antico matematico greco Ipparco di Nicea, che ci è noto conoscesse tali numeri, per , ha come primi elementi: 1, 1, 3, 11, 45, 197, 903, 4 279, 20 793, 103 049, ... (it) Числа Шрёдера — Гиппарха образуют , которую можно использовать для подсчёта числа плоских деревьев с заданным числом листьев, числа способов вставки скобок в последовательность и числа способов разбиения выпуклого многоугольника на меньшие многоугольники путём проведения диагоналей. Эта последовательность начинается с 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, ... последовательность в OEIS. Эти числа называются также суперкаталановыми числами, малыми числами Шрёдера, или числами Гиппарха (Эжен Шарль Каталан и его числа Каталана, Эрнст Шрёдер и тесно связанные Числа Шрёдера, древнегреческий математик Гиппарх, который по свидетельству Плутарха знал эти числа). (ru)
dbo:thumbnail wiki-commons:Special:FilePath/Pentagon_subdivisions.svg?width=300
dbo:wikiPageExternalLink http://golem.ph.utexas.edu/category/2013/04/permutations_polynomials_and_p.html
dbo:wikiPageID 33490570 (xsd:integer)
dbo:wikiPageLength 12748 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1122567882 (xsd:integer)
dbo:wikiPageWikiLink dbr:Row_vector dbr:Schröder_number dbc:Enumerative_combinatorics dbr:Hypergeometric_function dbr:Permutohedron dbr:Integer_sequence dbr:11_(number) dbr:Ordered_Bell_number dbr:Chrysippus dbr:Eigenvector dbr:Generating_function dbr:George_Washington_University dbr:197_(number) dbr:Combinatorics dbr:Pentagon dbr:Table_Talk_(Plutarch) dbr:1 dbr:CNRS dbr:Tree_(graph_theory) dbr:3 dbr:45_(number) dbc:Integer_sequences dbr:Dual_graph dbr:Ernst_Schröder_(mathematician) dbr:Eugène_Charles_Catalan dbr:Recurrence_relation dbr:Hipparchus dbr:Associahedron dbr:Bijective_proof dbr:Plutarch dbr:Infinity dbr:Catalan_number dbr:Factorial dbr:Narayana_number dbr:Permutation_pattern dbr:903_(number) dbr:Stoic_logic dbr:Plutarch's dbr:Double_permutation dbr:File:Pentagon_subdivisions.svg dbr:File:Tree-polygon-paren_equivalence.svg
dbp:authorlink Susanne Bobzien (en)
dbp:first Susanne (en)
dbp:firstTerms 1131145197903 (xsd:decimal)
dbp:last Bobzien (en)
dbp:mode cs2 (en)
dbp:namedAfter dbr:Ernst_Schröder_(mathematician) dbr:Eugène_Charles_Catalan dbr:Hipparchus
dbp:oeis A001003 (en)
dbp:oeisName Little Schroeder numbers, (en) Super Catalan (en)
dbp:publicationYear 1870 (xsd:integer)
dbp:termsNumber dbr:Infinity
dbp:title Super Catalan Number (en)
dbp:urlname SuperCatalanNumber (en)
dbp:wikiPageUsesTemplate dbt:Harvtxt dbt:Mathworld dbt:OEIS dbt:Reflist dbt:Harvs dbt:Classes_of_natural_numbers dbt:Infobox_integer_sequence
dbp:year 2011 (xsd:integer)
dcterms:subject dbc:Enumerative_combinatorics dbc:Integer_sequences
rdf:type yago:Abstraction100002137 yago:Arrangement107938773 yago:Group100031264 yago:Ordering108456993 yago:WikicatIntegerSequences yago:Sequence108459252 yago:Series108457976
rdfs:comment In combinatorics, the Schröder–Hipparchus numbers form an integer sequence that can be used to count the number of plane trees with a given set of leaves, the number of ways of inserting parentheses into a sequence, and the number of ways of dissecting a convex polygon into smaller polygons by inserting diagonals. These numbers begin 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, ... (sequence in the OEIS). (en) En théorie des nombres, les nombres de Schröder-Hipparque forment une suite d'entiers qui servent à compter les arbres planaires avec un ensemble donné de feuilles, les insertions de parenthèses dans une suite, et le nombre de façons de découper un polygone convexe en polygones plus petits par l'insertion de diagonales. Cette suite de nombres commence par 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859,... (c'est la suite de l'OEIS). (fr) In matematica, data una griglia quadrata di dimensione nel 1° quadrante di un sistema di riferimento cartesiano, il numero di Schröder-Ipparco, , descrive il numero di cammini possibili per arrivare dal punto di coordinate al punto di coordinate , ammettendo di potersi muovere soltanto in verticale e in orizzontale o in diagonale verso destra e senza che il cammino oltrepassi mai la diagonale data dalla retta di equazione o abbia passi che corrono lungo di essa. I numeri di Schröder-Ipparco sono detti anche piccoli numeri di Schröder e differiscono dai "grandi numeri di Schröder" per il fatto che questi ultimi tengono anche conto dei cammini che non aderiscono all'ultima delle condizioni sopra elencate. (it) Числа Шрёдера — Гиппарха образуют , которую можно использовать для подсчёта числа плоских деревьев с заданным числом листьев, числа способов вставки скобок в последовательность и числа способов разбиения выпуклого многоугольника на меньшие многоугольники путём проведения диагоналей. Эта последовательность начинается с 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, ... последовательность в OEIS. (ru)
rdfs:label Nombre de Schröder-Hipparque (fr) Numero di Schröder-Ipparco (it) Schröder–Hipparchus number (en) Числа Шрёдера — Гиппарха (ru)
owl:sameAs freebase:Schröder–Hipparchus number wikidata:Schröder–Hipparchus number dbpedia-fr:Schröder–Hipparchus number dbpedia-it:Schröder–Hipparchus number dbpedia-ro:Schröder–Hipparchus number dbpedia-ru:Schröder–Hipparchus number https://global.dbpedia.org/id/WyFp
prov:wasDerivedFrom wikipedia-en:Schröder–Hipparchus_number?oldid=1122567882&ns=0
foaf:depiction wiki-commons:Special:FilePath/Pentagon_subdivisions.svg wiki-commons:Special:FilePath/Tree-polygon-paren_equivalence.svg
foaf:isPrimaryTopicOf wikipedia-en:Schröder–Hipparchus_number
is dbo:wikiPageRedirects of dbr:Schroder-Hipparchus_number dbr:Schroder–Hipparchus_number dbr:Schroeder-Hipparchus_number dbr:Schröder-Hipparchus_number dbr:Super_Catalan_number dbr:Small_Schröder_number dbr:Little_Schröder_number
is dbo:wikiPageWikiLink of dbr:Schroder-Hipparchus_number dbr:Schröder_number dbr:190_(number) dbr:197_(number) dbr:Combinatorics dbr:900_(number) dbr:Toufik_Mansour dbr:Ernst_Schröder_(mathematician) dbr:History_of_combinatorics dbr:Hipparchus dbr:Associahedron dbr:Catalan_number dbr:Schroder–Hipparchus_number dbr:Schroeder-Hipparchus_number dbr:Schröder-Hipparchus_number dbr:Super_Catalan_number dbr:Small_Schröder_number dbr:Little_Schröder_number
is foaf:primaryTopic of wikipedia-en:Schröder–Hipparchus_number