dbo:abstract |
En mathématiques, une relation binaire sur E est dite sérielle si chaque élément de E est en relation avec au moins un élément de E. Formellement, la propriété de sérialité pour une relation définie sur un ensemble s'écrit de la façon suivante : . (fr) In set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation. Bertrand Russell used serial relations in The Principles of Mathematics (1903) as he explored the foundations of order theory and its applications. The term serial relation was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity. A serial relation R is an endorelation on a set U. As stated by Russell, where the universal and existential quantifiers refer to U. In contemporary language of relations, this property defines a total relation. But a total relation may be heterogeneous. Serial relations are of historic interest. For a relation R, let {y: xRy } denote the "successor neighborhood" of x. A serial relation can be equivalently characterized as a relation for which every element has a non-empty successor neighborhood. Similarly, an inverse serial relation is a relation in which every element has non-empty "predecessor neighborhood". In normal modal logic, the extension of fundamental axiom set K by the serial property results in axiom set D. (en) |
dbo:wikiPageExternalLink |
http://www2.cs.uregina.ca/~yyao/PAPERS/relation.pdf https://books.google.com/books%3Fid=gLS4CQAAQBAJ&pg=PA416 |
dbo:wikiPageID |
12982585 (xsd:integer) |
dbo:wikiPageLength |
5152 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1089489199 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Scientific_notation dbr:Bertrand_Russell dbr:Homogeneous_relation dbr:Relation_(mathematics) dbr:Decade_(log_scale) dbc:Order_theory dbr:Connected_relation dbr:Measurement dbr:Order_theory dbr:The_Principles_of_Mathematics dbr:Endorelation dbr:Giuseppe_Peano dbr:Successor_function dbr:Transitive_relation dbr:Alexius_Meinong dbr:Cyclic_order dbc:Binary_relations dbr:Total_relation dbr:Natural_number dbr:Ordinal_number dbr:Sequence dbr:Set_theory dbr:Point-pair_separation dbr:Cayley-Klein_metric dbr:Normal_modal_logic dbr:Orders_of_magnitude dbr:B._A._Bernstein dbr:Cross_ratio |
dbp:wikiPageUsesTemplate |
dbt:Cite_book dbt:Cite_journal dbt:Reflist dbt:Rp |
dct:subject |
dbc:Order_theory dbc:Binary_relations |
rdfs:comment |
En mathématiques, une relation binaire sur E est dite sérielle si chaque élément de E est en relation avec au moins un élément de E. Formellement, la propriété de sérialité pour une relation définie sur un ensemble s'écrit de la façon suivante : . (fr) In set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation. Bertrand Russell used serial relations in The Principles of Mathematics (1903) as he explored the foundations of order theory and its applications. The term serial relation was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity. (en) |
rdfs:label |
Relation sérielle (fr) Relazione seriale (it) Serial relation (en) |
owl:sameAs |
wikidata:Serial relation dbpedia-fr:Serial relation dbpedia-it:Serial relation https://global.dbpedia.org/id/5fmLs |
prov:wasDerivedFrom |
wikipedia-en:Serial_relation?oldid=1089489199&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Serial_relation |
is dbo:wikiPageDisambiguates of |
dbr:Relation dbr:Serial |
is dbo:wikiPageWikiLink of |
dbr:Modal_logic dbr:Binary_relation dbr:Relation_(mathematics) dbr:Connected_relation dbr:Order_theory dbr:The_Principles_of_Mathematics dbr:Kripke_semantics dbr:Filter_(set_theory) dbr:Relation dbr:Serial dbr:Normal_modal_logic dbr:Outline_of_logic |
is foaf:primaryTopic of |
wikipedia-en:Serial_relation |