Serial relation (original) (raw)

Property Value
dbo:abstract En mathématiques, une relation binaire sur E est dite sérielle si chaque élément de E est en relation avec au moins un élément de E. Formellement, la propriété de sérialité pour une relation définie sur un ensemble s'écrit de la façon suivante : . (fr) In set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation. Bertrand Russell used serial relations in The Principles of Mathematics (1903) as he explored the foundations of order theory and its applications. The term serial relation was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity. A serial relation R is an endorelation on a set U. As stated by Russell, where the universal and existential quantifiers refer to U. In contemporary language of relations, this property defines a total relation. But a total relation may be heterogeneous. Serial relations are of historic interest. For a relation R, let {y: xRy } denote the "successor neighborhood" of x. A serial relation can be equivalently characterized as a relation for which every element has a non-empty successor neighborhood. Similarly, an inverse serial relation is a relation in which every element has non-empty "predecessor neighborhood". In normal modal logic, the extension of fundamental axiom set K by the serial property results in axiom set D. (en)
dbo:wikiPageExternalLink http://www2.cs.uregina.ca/~yyao/PAPERS/relation.pdf https://books.google.com/books%3Fid=gLS4CQAAQBAJ&pg=PA416
dbo:wikiPageID 12982585 (xsd:integer)
dbo:wikiPageLength 5152 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1089489199 (xsd:integer)
dbo:wikiPageWikiLink dbr:Scientific_notation dbr:Bertrand_Russell dbr:Homogeneous_relation dbr:Relation_(mathematics) dbr:Decade_(log_scale) dbc:Order_theory dbr:Connected_relation dbr:Measurement dbr:Order_theory dbr:The_Principles_of_Mathematics dbr:Endorelation dbr:Giuseppe_Peano dbr:Successor_function dbr:Transitive_relation dbr:Alexius_Meinong dbr:Cyclic_order dbc:Binary_relations dbr:Total_relation dbr:Natural_number dbr:Ordinal_number dbr:Sequence dbr:Set_theory dbr:Point-pair_separation dbr:Cayley-Klein_metric dbr:Normal_modal_logic dbr:Orders_of_magnitude dbr:B._A._Bernstein dbr:Cross_ratio
dbp:wikiPageUsesTemplate dbt:Cite_book dbt:Cite_journal dbt:Reflist dbt:Rp
dct:subject dbc:Order_theory dbc:Binary_relations
rdfs:comment En mathématiques, une relation binaire sur E est dite sérielle si chaque élément de E est en relation avec au moins un élément de E. Formellement, la propriété de sérialité pour une relation définie sur un ensemble s'écrit de la façon suivante : . (fr) In set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation. Bertrand Russell used serial relations in The Principles of Mathematics (1903) as he explored the foundations of order theory and its applications. The term serial relation was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity. (en)
rdfs:label Relation sérielle (fr) Relazione seriale (it) Serial relation (en)
owl:sameAs wikidata:Serial relation dbpedia-fr:Serial relation dbpedia-it:Serial relation https://global.dbpedia.org/id/5fmLs
prov:wasDerivedFrom wikipedia-en:Serial_relation?oldid=1089489199&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Serial_relation
is dbo:wikiPageDisambiguates of dbr:Relation dbr:Serial
is dbo:wikiPageWikiLink of dbr:Modal_logic dbr:Binary_relation dbr:Relation_(mathematics) dbr:Connected_relation dbr:Order_theory dbr:The_Principles_of_Mathematics dbr:Kripke_semantics dbr:Filter_(set_theory) dbr:Relation dbr:Serial dbr:Normal_modal_logic dbr:Outline_of_logic
is foaf:primaryTopic of wikipedia-en:Serial_relation