dbo:abstract |
In mathematics and mathematical physics, Slater integrals are certain integrals of products of three spherical harmonics. They occur naturally when applying an orthonormal basis of functions on the unit sphere that transform in a particular way under rotations in three dimensions. Such integrals are particularly useful when computing properties of atoms which have natural spherical symmetry. These integrals are defined below along with some of their mathematical properties. (en) スレーター積分(英: Slater integral)とは数学または数理物理学において用いられる、三つの球面調和関数積の積分である。三次元の回転変換した単位球面上の関数の正規直交基底関数を用いるときに現れる積分である。このような積分は球対称性をもつ原子の物性計算を行うときによく用いられる。数学的ないくつかの性質により、これらの積分は下記のように定義される。 (ja) Em matemática e em física matemática, os integrais de Slater são certos integrais de produtos de três harmónicas esféricas. Eles ocorrem naturalmente quando se aplica uma base ortonormal de funções à que se transforma de uma forma particular quando rodada em três dimensões. Estes integrais são particularmente úteis no cálculo de propriedades de átomos que possuem simetria esférica natural. (pt) |
dbo:wikiPageID |
22843059 (xsd:integer) |
dbo:wikiPageLength |
3229 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1098454820 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Quantum_mechanics dbr:Orthonormal_basis dbr:Unit_sphere dbc:Rotational_symmetry dbc:Atomic_physics dbr:Coulomb_operator dbc:Quantum_chemistry dbr:John_C._Slater dbr:Associated_Legendre_polynomials dbr:Spherical_harmonic dbr:Exchange_operator dbr:Hartree–Fock dbr:Atomic_structure dbr:Wigner_3-j_symbol |
dbp:wikiPageUsesTemplate |
dbt:Quantum-chemistry-stub |
dcterms:subject |
dbc:Rotational_symmetry dbc:Atomic_physics dbc:Quantum_chemistry |
gold:hypernym |
dbr:Integrals |
rdfs:comment |
In mathematics and mathematical physics, Slater integrals are certain integrals of products of three spherical harmonics. They occur naturally when applying an orthonormal basis of functions on the unit sphere that transform in a particular way under rotations in three dimensions. Such integrals are particularly useful when computing properties of atoms which have natural spherical symmetry. These integrals are defined below along with some of their mathematical properties. (en) スレーター積分(英: Slater integral)とは数学または数理物理学において用いられる、三つの球面調和関数積の積分である。三次元の回転変換した単位球面上の関数の正規直交基底関数を用いるときに現れる積分である。このような積分は球対称性をもつ原子の物性計算を行うときによく用いられる。数学的ないくつかの性質により、これらの積分は下記のように定義される。 (ja) Em matemática e em física matemática, os integrais de Slater são certos integrais de produtos de três harmónicas esféricas. Eles ocorrem naturalmente quando se aplica uma base ortonormal de funções à que se transforma de uma forma particular quando rodada em três dimensões. Estes integrais são particularmente úteis no cálculo de propriedades de átomos que possuem simetria esférica natural. (pt) |
rdfs:label |
スレーター積分 (ja) Slater integrals (en) Integrais de Slater (pt) |
owl:sameAs |
freebase:Slater integrals wikidata:Slater integrals dbpedia-ja:Slater integrals dbpedia-pt:Slater integrals https://global.dbpedia.org/id/4v36x |
prov:wasDerivedFrom |
wikipedia-en:Slater_integrals?oldid=1098454820&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Slater_integrals |
is dbo:knownFor of |
dbr:John_C._Slater |
is dbo:wikiPageWikiLink of |
dbr:Index_of_physics_articles_(S) dbr:Racah_parameter dbr:Tanabe–Sugano_diagram dbr:John_C._Slater dbr:Spherical_harmonics |
is dbp:knownFor of |
dbr:John_C._Slater |
is foaf:primaryTopic of |
wikipedia-en:Slater_integrals |