Entropy rate (original) (raw)

About DBpedia

Die Entropierate (englisch entropy rate) ermöglicht in der Informationstheorie unabhängig von der Länge einer Nachricht eine Messung der Entropie bezogen auf ein Zeichen. Formal lässt sie sich folgendermaßen definieren: . Hierbei ist die Anzahl der Zeichen der Nachricht bzw. die Anzahl der Zufallsvariablen. Die Entropierate ermöglicht einen Vergleich der Entropien von Nachrichten unterschiedlicher Länge.

Property Value
dbo:abstract Die Entropierate (englisch entropy rate) ermöglicht in der Informationstheorie unabhängig von der Länge einer Nachricht eine Messung der Entropie bezogen auf ein Zeichen. Formal lässt sie sich folgendermaßen definieren: . Hierbei ist die Anzahl der Zeichen der Nachricht bzw. die Anzahl der Zufallsvariablen. Die Entropierate ermöglicht einen Vergleich der Entropien von Nachrichten unterschiedlicher Länge. (de) In the mathematical theory of probability, the entropy rate or source information rate of a stochastic process is, informally, the time density of the average information in a stochastic process. For stochastic processes with a countable index, the entropy rate is the limit of the joint entropy of members of the process divided by , as tends to infinity: when the limit exists. An alternative, related quantity is: For strongly stationary stochastic processes, . The entropy rate can be thought of as a general property of stochastic sources; this is the asymptotic equipartition property. The entropy rate may be used to estimate the complexity of stochastic processes. It is used in diverse applications ranging from characterizing the complexity of languages, blind source separation, through to optimizing quantizers and data compression algorithms. For example, a maximum entropy rate criterion may be used for feature selection in machine learning. (en) La ratio de entropía de una secuencia de n variables aleatorias (proceso estocástico) caracteriza la tasa de crecimiento de la entropía de la secuencia con el crecimiento de n. La tasa de entropía de un proceso estocástico viene definida por la ecuación: siempre que dicho límite exista. Una cantidad relacionada con la ratio de entropía ( H(X) ) es: cuando dicho límite existe. H'(X) mide la entropía condicional de la última variable aleatoria en función de todas las anteriores. Para proceso estocásticos estacionarios se cumple H(X)=H'(X) (es) 確率の数理理論において確率過程のエントロピーレート(英: entropy rate)または情報源レート(source information rate)とは、平たく言えば、確率過程における情報量の時間平均である。可算個の時間添字を持つ確率過程のエントロピーレート は、 ステップまでの の結合エントロピーを で割った量の、 が無限大に向かうときの極限と定義される(極限が存在するときに限る): 一方、関連する量に がある。強定常過程に対しては となる。エントロピーレートは確率過程の一般的性質として捉えることができ、これはと呼ばれる。エントロピーレートは確率過程の複雑性の推定にも使うことができる。また、言語の複雑性の特徴付け、ブラインド信号源分離、量化子器の最適化、データ圧縮アルゴリズムといった広範な対象に応用される。例えば、エントロピーレート最大化基準は機械学習における特徴選択に利用することができる。 (ja) У математичній теорії ймовірності шви́дкість ентропі́ї або шви́дкість джерела́ інформа́ції (англ. entropy rate, source information rate) стохастичного процесу — це, неформально, часова густина усередненої інформації в стохастичному процесі. Для стохастичних процесів зі зліченним індексом швидкістю ентропії Η(X) є границя спільної ентропії n членів процесу Xk, поділена на n, при прямуванні n до нескінченності: коли ця границя існує. Альтернативною, пов'язаною величиною є Для строго стаціонарних стохастичних процесів . Швидкість ентропії можна розглядати як загальну властивість стохастичних джерел; це є . (uk) В математической теории вероятности энтропийная скорость случайного процесса является, неформально говоря, временно́й плотностью средней информации в стохастическом процессе. Для стохастических процессов со счётным индексом энтропийная скорость является пределом членов процесса , поделённым на , при стремлении к бесконечности: если предел существует. Альтернативно, связанной величиной является: Для сильно стационарных стохастических процессов . Энтропийную скорость можно рассматривать как общее свойство стохастических источников, то есть . Энтропийная скорость можно использовать для оценки сложности стохастических процессов. Он используется в различных приложениях от описания сложности языков, слепого разделения сигналов до оптимизации преобразователей и алгоритмов сжатия данных. Например, критерий максимальной энтропийной скорость может быть использован для отбора признаков в обучении машин. (ru) 在概率的数学理论中,非正式地说,一个随机过程的熵率或信源信息率是在一个随机过程的平均信息的时间密度。对于一个索引可数的随机过程,熵率 Η(X) 是 n 个 Xk 过程作为成员的联合熵,在 n 趋向无穷时的极限: 前提是该极限存在。另一种相关量为: 对于强平稳随机过程, 熵率可以被认为是随机信源的一般特性;这是渐近均分割性。 (zh)
dbo:wikiPageExternalLink https://archive.today/20121216133431/http:/www3.interscience.wiley.com/cgi-bin/bookhome/110438582%3FCRETRY=1&SRETRY=0
dbo:wikiPageID 11071463 (xsd:integer)
dbo:wikiPageLength 3165 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1051048994 (xsd:integer)
dbo:wikiPageWikiLink dbr:Joint_entropy dbr:Information_source_(mathematics) dbr:Entropy_(information_theory) dbr:Limit_(mathematics) dbr:Machine_learning dbr:Stochastic_matrix dbr:Feature_selection dbr:Markov_information_source dbc:Entropy dbr:Countable dbr:Stationary_distribution dbc:Information_theory dbr:Probability dbr:Asymptotic_distribution dbr:Asymptotic_equipartition_property dbc:Markov_models dbc:Temporal_rates dbr:Aperiodic dbr:Infinity dbr:Markov_chain dbr:Stochastic_process dbr:Maximal_Entropy_Random_Walk dbr:Independent_and_identically_distributed dbr:Strongly_stationary
dbp:wikiPageUsesTemplate dbt:ISBN dbt:Reflist dbt:Information_theory
dcterms:subject dbc:Entropy dbc:Information_theory dbc:Markov_models dbc:Temporal_rates
rdf:type yago:WikicatMarkovModels yago:WikicatStatisticalModels yago:Assistant109815790 yago:CausalAgent100007347 yago:LivingThing100004258 yago:Model110324560 yago:Object100002684 yago:Organism100004475 yago:Person100007846 yago:PhysicalEntity100001930 yago:Worker109632518 yago:YagoLegalActor yago:YagoLegalActorGeo yago:Whole100003553
rdfs:comment Die Entropierate (englisch entropy rate) ermöglicht in der Informationstheorie unabhängig von der Länge einer Nachricht eine Messung der Entropie bezogen auf ein Zeichen. Formal lässt sie sich folgendermaßen definieren: . Hierbei ist die Anzahl der Zeichen der Nachricht bzw. die Anzahl der Zufallsvariablen. Die Entropierate ermöglicht einen Vergleich der Entropien von Nachrichten unterschiedlicher Länge. (de) La ratio de entropía de una secuencia de n variables aleatorias (proceso estocástico) caracteriza la tasa de crecimiento de la entropía de la secuencia con el crecimiento de n. La tasa de entropía de un proceso estocástico viene definida por la ecuación: siempre que dicho límite exista. Una cantidad relacionada con la ratio de entropía ( H(X) ) es: cuando dicho límite existe. H'(X) mide la entropía condicional de la última variable aleatoria en función de todas las anteriores. Para proceso estocásticos estacionarios se cumple H(X)=H'(X) (es) 確率の数理理論において確率過程のエントロピーレート(英: entropy rate)または情報源レート(source information rate)とは、平たく言えば、確率過程における情報量の時間平均である。可算個の時間添字を持つ確率過程のエントロピーレート は、 ステップまでの の結合エントロピーを で割った量の、 が無限大に向かうときの極限と定義される(極限が存在するときに限る): 一方、関連する量に がある。強定常過程に対しては となる。エントロピーレートは確率過程の一般的性質として捉えることができ、これはと呼ばれる。エントロピーレートは確率過程の複雑性の推定にも使うことができる。また、言語の複雑性の特徴付け、ブラインド信号源分離、量化子器の最適化、データ圧縮アルゴリズムといった広範な対象に応用される。例えば、エントロピーレート最大化基準は機械学習における特徴選択に利用することができる。 (ja) 在概率的数学理论中,非正式地说,一个随机过程的熵率或信源信息率是在一个随机过程的平均信息的时间密度。对于一个索引可数的随机过程,熵率 Η(X) 是 n 个 Xk 过程作为成员的联合熵,在 n 趋向无穷时的极限: 前提是该极限存在。另一种相关量为: 对于强平稳随机过程, 熵率可以被认为是随机信源的一般特性;这是渐近均分割性。 (zh) In the mathematical theory of probability, the entropy rate or source information rate of a stochastic process is, informally, the time density of the average information in a stochastic process. For stochastic processes with a countable index, the entropy rate is the limit of the joint entropy of members of the process divided by , as tends to infinity: when the limit exists. An alternative, related quantity is: (en) В математической теории вероятности энтропийная скорость случайного процесса является, неформально говоря, временно́й плотностью средней информации в стохастическом процессе. Для стохастических процессов со счётным индексом энтропийная скорость является пределом членов процесса , поделённым на , при стремлении к бесконечности: если предел существует. Альтернативно, связанной величиной является: (ru) У математичній теорії ймовірності шви́дкість ентропі́ї або шви́дкість джерела́ інформа́ції (англ. entropy rate, source information rate) стохастичного процесу — це, неформально, часова густина усередненої інформації в стохастичному процесі. Для стохастичних процесів зі зліченним індексом швидкістю ентропії Η(X) є границя спільної ентропії n членів процесу Xk, поділена на n, при прямуванні n до нескінченності: коли ця границя існує. Альтернативною, пов'язаною величиною є (uk)
rdfs:label Entropierate (de) Ratio de entropía (es) Entropy rate (en) エントロピーレート (ja) Энтропийная скорость (ru) 熵率 (zh) Ентропійна швидкість (uk)
owl:sameAs freebase:Entropy rate yago-res:Entropy rate wikidata:Entropy rate http://bs.dbpedia.org/resource/Stopa_entropije dbpedia-de:Entropy rate dbpedia-es:Entropy rate dbpedia-ja:Entropy rate dbpedia-mk:Entropy rate dbpedia-ru:Entropy rate dbpedia-uk:Entropy rate dbpedia-zh:Entropy rate https://global.dbpedia.org/id/MfSL
prov:wasDerivedFrom wikipedia-en:Entropy_rate?oldid=1051048994&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Entropy_rate
is dbo:wikiPageRedirects of dbr:Source_information_rate
is dbo:wikiPageWikiLink of dbr:Entropy_(order_and_disorder) dbr:Bayesian_network dbr:Information_source_(mathematics) dbr:Entropy_(information_theory) dbr:Feature_selection dbr:Markov_information_source dbr:Maximal_entropy_random_walk dbr:Typical_set dbr:Grammar-based_code dbr:Redundancy_(information_theory) dbr:Asymptotic_equipartition_property dbr:Y_chromosome dbr:Human_genome dbr:Information_theory dbr:Random_walk dbr:Stochastic_process dbr:Outline_of_machine_learning dbr:Source_information_rate
is foaf:primaryTopic of wikipedia-en:Entropy_rate