Sum of two squares theorem (original) (raw)

Property Value
dbo:abstract في نظرية الأعداد، تتعلق مبرهنة مجموع مربعين (بالإنجليزية: Sum of two squares theorem)‏ بإمكانية تفكيك عدد صحيح ما إلى مجموع مربعين اثنين لعددين طبيعيين. يُكتب عدد طبيعي ما أكبر من الواحد مجموعا لمربع عددين طبيعيين اثنين إذا وفقط إذا لم يحتو تفكيكه إلى جداء أعداد أولية على عامل يُكتب على الشكل pk حيث p أولي وحيث وحيث k عدد فردي. (ar) In number theory, the sum of two squares theorem relates the prime decomposition of any integer n > 1 to whether it can be written as a sum of two squares, such that n = a2 + b2 for some integers a, b. An integer greater than one can be written as a sum of two squares if and only if its prime decomposition contains no factor pk, where prime and k is odd. In writing a number as a sum of two squares, it is allowed for one of the squares to be zero, or for both of them to be equal to each other, so all squares and all doubles of squares are included in the numbers that can be represented in this way. This theorem supplements Fermat's theorem on sums of two squares which says when a prime number can be written as a sum of two squares, in that it also covers the case for composite numbers. A number may have multiple representations as a sum of two squares, counted by the sum of squares function; for instance, every Pythagorean triple gives a second representation for beyond the trivial representation . (en)
dbo:wikiPageID 46248976 (xsd:integer)
dbo:wikiPageLength 3891 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1064249184 (xsd:integer)
dbo:wikiPageWikiLink dbr:Pythagorean_triple dbr:Brahmagupta–Fibonacci_identity dbr:Integer_lattice dbr:Line_segment dbc:Additive_number_theory dbc:Theorems_in_number_theory dbr:Gaussian_integer dbr:Composite_number dbr:Parity_(mathematics) dbr:Landau–Ramanujan_constant dbc:Squares_in_number_theory dbr:Number_theory dbr:Legendre's_three-square_theorem dbr:Prime_number dbr:Lagrange's_four-square_theorem dbr:Sum_of_squares_function dbr:Square_number dbr:Fermat's_theorem_on_sums_of_two_squares dbr:Field_norm dbr:If_and_only_if dbr:Integer dbr:Prime_decomposition dbr:Integer_sequences
dbp:wikiPageUsesTemplate dbt:Math dbt:Mvar dbt:Reflist dbt:Short_description dbt:Sup dbt:Var dbt:Middot dbt:Numtheory-stub
dct:subject dbc:Additive_number_theory dbc:Theorems_in_number_theory dbc:Squares_in_number_theory
rdfs:comment في نظرية الأعداد، تتعلق مبرهنة مجموع مربعين (بالإنجليزية: Sum of two squares theorem)‏ بإمكانية تفكيك عدد صحيح ما إلى مجموع مربعين اثنين لعددين طبيعيين. يُكتب عدد طبيعي ما أكبر من الواحد مجموعا لمربع عددين طبيعيين اثنين إذا وفقط إذا لم يحتو تفكيكه إلى جداء أعداد أولية على عامل يُكتب على الشكل pk حيث p أولي وحيث وحيث k عدد فردي. (ar) In number theory, the sum of two squares theorem relates the prime decomposition of any integer n > 1 to whether it can be written as a sum of two squares, such that n = a2 + b2 for some integers a, b. An integer greater than one can be written as a sum of two squares if and only if its prime decomposition contains no factor pk, where prime and k is odd. A number may have multiple representations as a sum of two squares, counted by the sum of squares function; for instance, every Pythagorean triple gives a second representation for beyond the trivial representation . (en)
rdfs:label مبرهنة مجموع مربعين (ar) Sum of two squares theorem (en)
owl:sameAs freebase:Sum of two squares theorem yago-res:Sum of two squares theorem wikidata:Sum of two squares theorem dbpedia-ar:Sum of two squares theorem https://global.dbpedia.org/id/2Npkr
prov:wasDerivedFrom wikipedia-en:Sum_of_two_squares_theorem?oldid=1064249184&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Sum_of_two_squares_theorem
is dbo:wikiPageRedirects of dbr:Sum_of_two_squares
is dbo:wikiPageWikiLink of dbr:Elementary_Number_Theory,_Group_Theory_and_Ramanujan_Graphs dbr:Brahmagupta–Fibonacci_identity dbr:1105_(number) dbr:Conference_graph dbr:Landau–Ramanujan_constant dbr:Legendre's_three-square_theorem dbr:Lagrange's_four-square_theorem dbr:Fermat's_theorem_on_sums_of_two_squares dbr:Sum_of_squares dbr:Sum_of_two_squares
is foaf:primaryTopic of wikipedia-en:Sum_of_two_squares_theorem