Tobit model (original) (raw)

About DBpedia

Das Tobit-Modell ist ein auf James Tobin zurückgehendes ökonometrisches Modell zur Analyse beschränkt abhängiger Variablen (zensierte Daten). Da die abhängige Variable nur auf einem bestimmten Wertebereich existiert, sind normale Regressionsparameter nicht die bestmöglichen Schätzer, sodass die Schätzfunktion korrigiert werden muss. Diese Korrektur ist im Tobit-Modell implementiert.

Property Value
dbo:abstract Das Tobit-Modell ist ein auf James Tobin zurückgehendes ökonometrisches Modell zur Analyse beschränkt abhängiger Variablen (zensierte Daten). Da die abhängige Variable nur auf einem bestimmten Wertebereich existiert, sind normale Regressionsparameter nicht die bestmöglichen Schätzer, sodass die Schätzfunktion korrigiert werden muss. Diese Korrektur ist im Tobit-Modell implementiert. (de) El modelo Tobit es un modelo estadístico propuesto por James Tobin (1958) para describir la relación entre una variable dependiente no negativa y una variable independiente (o vector ) . El término Tobit fue derivado del nombre truncando de Tobin y añadiendo, por analogía, el it como en el modelo probit o en el modelo logit.​ El modelo supone que existe una variable latente (no observable por ejemplo) . Esta variable depende linealmente de a través de un parámetro(vector) que determina la relación entre la variable independiente (o vector) y la variable latente (Tal como en un modelo lineal). Además, hay un término de error con una distribución normal para captar las influencias aleatorias en esta relación. La variable observable se define como igual a la variable latente cuando la variable latente es superior a cero y cero en caso contrario. donde es una variable latente: (es) Le modèle tobit est un modèle statistique utilisé pour décrire une relation entre une variable dépendante censurée et une variable indépendante. Il a été proposé par l'économiste James Tobin. (fr) In statistics, a tobit model is any of a class of regression models in which the observed range of the dependent variable is censored in some way. The term was coined by Arthur Goldberger in reference to James Tobin, who developed the model in 1958 to mitigate the problem of zero-inflated data for observations of household expenditure on durable goods. Because Tobin's method can be easily extended to handle truncated and other non-randomly selected samples, some authors adopt a broader definition of the tobit model that includes these cases. Tobin's idea was to modify the likelihood function so that it reflects the unequal sampling probability for each observation depending on whether the latent dependent variable fell above or below the determined threshold. For a sample that, as in Tobin's original case, was censored from below at zero, the sampling probability for each non-limit observation is simply the height of the appropriate density function. For any limit observation, it is the cumulative distribution, i.e. the integral below zero of the appropriate density function. The tobit likelihood function is thus a mixture of densities and cumulative distribution functions. (en)
dbo:wikiPageExternalLink https://archive.org/details/limiteddependent00madd https://archive.org/details/limiteddependent00madd/page/n82 https://books.google.com/books%3Fid=0bzGQE14CwEC&pg=PA360 https://books.google.com/books%3Fid=cligOwrd7XoC&pg=PA208 https://books.google.com/books%3Fid=dE2prs_U0QMC&pg=PA170 https://www.google.com/books/edition/_/btrvKnZSqIIC%3Fhl=en&gbpv=1&pg=PA4
dbo:wikiPageID 3722064 (xsd:integer)
dbo:wikiPageLength 18906 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1082158588 (xsd:integer)
dbo:wikiPageWikiLink dbc:Single-equation_methods_(econometrics) dbr:Probit_model dbr:Dependent_and_independent_variables dbr:Durable_good dbr:Limited_dependent_variable dbr:Probit dbr:Maximum_likelihood_estimation dbr:Zero-inflated_model dbr:Consistent_estimator dbr:Likelihood_function dbr:Portmanteau dbr:Stationary_point dbc:Regression_models dbr:Heckman_correction dbr:Least_squares dbr:Truncated_regression_model dbr:Anders_Hald dbr:Cumulative_distribution_function dbr:Censored_regression_model dbr:Censoring_(statistics) dbr:Density_function dbr:Probability_density_function dbr:Rectifier_(neural_networks) dbr:Regression_analysis dbr:Herman_Wouk dbr:James_Heckman dbr:James_Tobin dbr:Takeshi_Amemiya dbr:Sampling_probability dbr:Arthur_Goldberger dbr:Latent_variable dbr:Truncation_(statistics) dbr:Maximum_likelihood_estimator dbr:Integral dbr:The_Caine_Mutiny dbr:Truncated_normal_hurdle_model dbr:Linear_regression_model dbr:Powell's_CLAD_estimator
dbp:wikiPageUsesTemplate dbt:Cite_book dbt:Cite_journal dbt:Efn dbt:Em dbt:Harvtxt dbt:Notelist dbt:Reflist dbt:Section_link dbt:Short_description dbt:Economics
dcterms:isPartOf http://zbw.eu/stw/mapping/dbpedia/target
dcterms:subject dbc:Single-equation_methods_(econometrics) dbc:Regression_models
rdfs:comment Das Tobit-Modell ist ein auf James Tobin zurückgehendes ökonometrisches Modell zur Analyse beschränkt abhängiger Variablen (zensierte Daten). Da die abhängige Variable nur auf einem bestimmten Wertebereich existiert, sind normale Regressionsparameter nicht die bestmöglichen Schätzer, sodass die Schätzfunktion korrigiert werden muss. Diese Korrektur ist im Tobit-Modell implementiert. (de) Le modèle tobit est un modèle statistique utilisé pour décrire une relation entre une variable dépendante censurée et une variable indépendante. Il a été proposé par l'économiste James Tobin. (fr) El modelo Tobit es un modelo estadístico propuesto por James Tobin (1958) para describir la relación entre una variable dependiente no negativa y una variable independiente (o vector ) . El término Tobit fue derivado del nombre truncando de Tobin y añadiendo, por analogía, el it como en el modelo probit o en el modelo logit.​ donde es una variable latente: (es) In statistics, a tobit model is any of a class of regression models in which the observed range of the dependent variable is censored in some way. The term was coined by Arthur Goldberger in reference to James Tobin, who developed the model in 1958 to mitigate the problem of zero-inflated data for observations of household expenditure on durable goods. Because Tobin's method can be easily extended to handle truncated and other non-randomly selected samples, some authors adopt a broader definition of the tobit model that includes these cases. (en)
rdfs:label Tobit-Modell (de) Modelo Tobit (es) Modèle tobit (fr) Tobit model (en)
owl:sameAs freebase:Tobit model yago-res:Tobit model wikidata:Tobit model dbpedia-de:Tobit model dbpedia-es:Tobit model dbpedia-fa:Tobit model dbpedia-fr:Tobit model dbpedia-tr:Tobit model https://global.dbpedia.org/id/LEgk
skos:closeMatch http://zbw.eu/stw/descriptor/15346-3
prov:wasDerivedFrom wikipedia-en:Tobit_model?oldid=1082158588&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Tobit_model
is dbo:wikiPageDisambiguates of dbr:Tobit
is dbo:wikiPageRedirects of dbr:Generalized_Tobit dbr:Tobit_regression
is dbo:wikiPageWikiLink of dbr:Probit_model dbr:Dynamic_unobserved_effects_model dbr:Life-cycle_hypothesis dbr:Limited_dependent_variable dbr:Generalized_Tobit dbr:Single-equation_methods_(econometrics) dbr:Heckman_correction dbr:Censored_regression_model dbr:Censoring_(statistics) dbr:List_of_Nobel_Memorial_Prize_laureates_in_Economics dbr:Ramp_function dbr:Rectifier_(neural_networks) dbr:Gun_violence dbr:James_Tobin dbr:Top-coded dbr:Truncated_distribution dbr:Econometric_model dbr:Tobit dbr:List_of_statistics_articles dbr:Truncated_normal_hurdle_model dbr:Tobit_regression
is dbp:contributions of dbr:James_Tobin
is foaf:primaryTopic of wikipedia-en:Tobit_model