dbo:abstract |
In graph theory, a uniquely colorable graph is a k-chromatic graph that has only one possible (proper) k-coloring up to permutation of the colors. Equivalently, there is only one way to partition its vertices into k independent sets and there is no way to partition them into k − 1 independent sets. (en) Однозначно раскрашиваемый граф — это k-цветный граф, допускающий только одну (правильную) k-раскраску (с точностью до перестановки цветов). (ru) |
dbo:thumbnail |
wiki-commons:Special:FilePath/Generalized_Petersen_9_2_edge_coloring.svg?width=300 |
dbo:wikiPageExternalLink |
http://people.math.gatech.edu/~thomas/FC/fowlerphd.pdf%7Cyear=1998%7Ctitle=Unique |
dbo:wikiPageID |
676304 (xsd:integer) |
dbo:wikiPageLength |
9869 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1101009839 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Apollonian_network dbr:Path_graph dbr:Permutation dbr:Cubic_graph dbr:Independent_set_(graph_theory) dbc:Graph_coloring dbr:Complete_graph dbr:Generalized_Petersen_graph dbr:Glossary_of_graph_theory dbr:Graph_(discrete_mathematics) dbr:Graph_coloring dbr:Star_(graph_theory) dbr:Perfect_graph dbr:K-tree dbr:Cycle_graph dbr:Edge_coloring dbr:Discrete_Mathematics_(journal) dbr:Graph_partition dbr:Graph_theory dbr:Graphs_and_Combinatorics dbr:Journal_of_Combinatorial_Theory dbr:Bipartite_graph dbr:Planar_graph dbr:Empty_graph dbr:Vertex_(graph_theory) dbr:Total_coloring dbr:Triangular_pyramid dbr:Hamiltonian_cycle dbr:File:Generalized_Petersen_9_2_edge_coloring.svg |
dbp:authorlink |
W. T. Tutte (en) |
dbp:first |
W. T. (en) |
dbp:id |
UniquelyColorableGraph (en) |
dbp:last |
Tutte (en) |
dbp:mode |
cs2 (en) |
dbp:title |
Uniquely Colorable Graph (en) |
dbp:wikiPageUsesTemplate |
dbt:Citation dbt:Harvtxt dbt:Math dbt:Mathworld dbt:Mvar dbt:Reflist dbt:Sfnp dbt:Short_description dbt:Harvs |
dbp:year |
1976 (xsd:integer) |
dcterms:subject |
dbc:Graph_coloring |
gold:hypernym |
dbr:Graph |
rdf:type |
dbo:Software |
rdfs:comment |
In graph theory, a uniquely colorable graph is a k-chromatic graph that has only one possible (proper) k-coloring up to permutation of the colors. Equivalently, there is only one way to partition its vertices into k independent sets and there is no way to partition them into k − 1 independent sets. (en) Однозначно раскрашиваемый граф — это k-цветный граф, допускающий только одну (правильную) k-раскраску (с точностью до перестановки цветов). (ru) |
rdfs:label |
Uniquely colorable graph (en) Однозначно раскрашиваемый граф (ru) Однозначно розфарбовуваний граф (uk) |
owl:sameAs |
freebase:Uniquely colorable graph wikidata:Uniquely colorable graph dbpedia-ru:Uniquely colorable graph dbpedia-uk:Uniquely colorable graph https://global.dbpedia.org/id/4wN8h |
prov:wasDerivedFrom |
wikipedia-en:Uniquely_colorable_graph?oldid=1101009839&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/Generalized_Petersen_9_2_edge_coloring.svg |
foaf:isPrimaryTopicOf |
wikipedia-en:Uniquely_colorable_graph |
is dbo:wikiPageRedirects of |
dbr:Uniquely_edge-colorable_graph dbr:Uniquely_total_colorable_graph |
is dbo:wikiPageWikiLink of |
dbr:Apollonian_network dbr:List_of_graph_theory_topics dbr:Generalized_Petersen_graph dbr:Graph_coloring dbr:Edge_coloring dbr:Uniquely_edge-colorable_graph dbr:Uniquely_total_colorable_graph |
is foaf:primaryTopic of |
wikipedia-en:Uniquely_colorable_graph |