dbo:abstract |
Ein einfacher Graph heißt in der Graphentheorie kubisch oder 3-regulär, falls alle seine Knoten den Grad 3 besitzen. Kubische Graphen sind damit reguläre Graphen. Da 1-reguläre Graphen lediglich eine Paarung darstellen und 2-reguläre Graphen in disjunkte Zyklen zerfallen, sind kubische Graphen sogesehen die einfachsten nichttrivialen Fälle regulärer Graphen. (de) In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph. (en) En teoría de grafos, un grafo cúbico o grafo trivalente es un grafo cuyos vértices son todos incidentes a exactamente tres aristas. En otras palabras, un grafo cúbico es un grafo 3-regular. Un grafo bicúbico es un grafo bipartito cúbico. (es) En théorie des graphes, une branche des mathématiques, un graphe cubique est un graphe régulier de degré 3. En d'autres termes, c'est un graphe dans lequel il y a exactement trois arêtes incidentes à chaque sommet. (fr) 数学のグラフ理論の分野における立方体グラフ(りっぽうたいグラフ、英: cubic graph)とは、すべての頂点の次数が 3 であるようなグラフのことを言う。言い換えると、立方体グラフとは 3-正則グラフである。立方体グラフは 3価グラフとも呼ばれる。2部立方体グラフ(bicubic graph)とは、立方体グラフかつ2部グラフであるようなグラフのことを言う。 (ja) Nel campo matematico della teoria dei grafi, un grafo cubico è un grafo in cui tutti i vertici hanno grado tre. In altre parole un grafo cubico è un grafo 3-. I grafi cubici sono chiamati anche grafi trivalenti. Un grafo bicubico è un grafo bipartito cubico. (it) Куби́ческий граф — граф, в котором все вершины имеют степень три. Другими словами, кубический граф является 3-регулярным. Кубические графы называются также тривалентными. Бикубический граф — это кубический двудольный граф. (ru) Graf kubiczny (ang. cubic graph, trivalent graph) – graf regularny stopnia 3 (graf 3-regularny). (pl) No campo da matemática da teoria dos grafos, um grafo cúbico é um grafo regular no qual todos os vértices tem grau três. Em outras palavras um grafo cúbico é um grafo 3-regular. Grafos cúbicos são também chamados grafos trivalentes. Um grafo bicúbico é um grafo bipartido cúbico. (pt) Кубі́чний граф в теорії графів — це граф, всі вершини якого мають степінь три. Інакше кажучи, кубічний граф це 3-регулярний граф. Кубічні графи також називають тривале́нтними гра́фами. Бікубі́чний граф — кубічний двочастковий граф. (uk) 在图论中,若一个图的每个顶点度数均为三,则称其为立方图(Cubic graph)、3-正则图或三次图。 彼得森图、汤玛森图等都是立方图。 (zh) |
dbo:thumbnail |
wiki-commons:Special:FilePath/Petersen1_tiny.svg?width=300 |
dbo:wikiPageExternalLink |
http://mapleta.maths.uwa.edu.au/~gordon/remote/foster/%7Cfirst1=Gordon%7Clast1=Royle%7Ctitle=Cubic https://web.archive.org/web/20111023234733/http:/mapleta.maths.uwa.edu.au/~gordon/remote/foster/%7Carchive-date=2011-10-23 |
dbo:wikiPageID |
980508 (xsd:integer) |
dbo:wikiPageLength |
15000 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1099980857 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Michael_D._Plummer dbr:Barnette's_conjecture dbr:David_Eppstein dbr:Desargues_graph dbc:Graph_families dbr:Approximation_algorithm dbr:Hypercube_graph dbr:Pathwidth dbr:Perfect_matching dbr:Petersen's_theorem dbr:Regular_dodecahedron dbr:Regular_graph dbr:Vertex_cover dbr:Vizing's_theorem dbr:Degree_(graph_theory) dbr:Double-star_snark dbr:Dyck_graph dbr:Independent_set_(graph_theory) dbr:Kőnig's_theorem_(graph_theory) dbr:Polyhedron dbr:Peter_Guthrie_Tait dbc:Regular_graphs dbr:Complete_graph dbr:Crossing_number_(graph_theory) dbr:Mathematics dbr:Maximum_cut dbr:Ellingham–Horton_graph dbr:Generic_property dbr:Petersen_graph dbr:Tait's_conjecture dbr:Graph_(discrete_mathematics) dbr:NP-hard dbr:Travelling_Salesman_Problem dbr:Leonhard_Euler dbr:Lower_bound dbr:László_Lovász dbr:Snark_(graph_theory) dbr:Frucht_graph dbr:Horton_graph dbr:Pappus_graph dbr:Mark_Ellingham dbr:Szekeres_snark dbr:Topology dbr:Travelling_salesman_problem dbr:W._T._Tutte dbr:Heawood_graph dbr:Ljubljana_graph dbr:R._M._Foster dbr:Cubic_function dbr:Dynamic_programming dbr:Edge_coloring dbr:Flag_(geometry) dbr:Bridge_(graph_theory) dbr:Brooks'_theorem dbr:Flower_snark dbr:Foster_graph dbr:Graph-encoded_map dbr:Graph_automorphism dbr:Graph_drawing dbr:Graph_embedding dbr:Graph_of_a_function dbr:Graph_theory dbr:Gray_graph dbr:Handshaking_lemma dbr:Coxeter_graph dbr:APX dbr:LCF_notation dbr:Biggs–Smith_graph dbr:Bipartite_graph dbr:Blanuša_snarks dbr:Symmetric_graph dbr:Tietze's_graph dbr:Watkins_snark dbr:Dominating_set dbr:CW_complex dbr:Approximation_ratio dbr:Vertex_(graph_theory) dbr:Exponential_time dbr:Tutte_graph dbr:Möbius–Kantor_graph dbr:Nauru_graph dbr:Tutte_12-cage dbr:Tutte–Coxeter_graph dbr:Polyhedral_graph dbr:Semi-symmetric_graph dbr:Random_graph dbr:Maximum_independent_set dbr:Hamiltonian_circuit dbr:Table_of_simple_cubic_graphs dbr:Water,_gas,_and_electricity dbr:P_vs_NP_problem dbr:Foster_census dbr:Hamiltonian_cycle dbr:Polynomial_time_approximation_scheme dbr:William_Thomas_Tutte dbr:Path_decomposition dbr:Vertex_coloring dbr:File:Petersen1_tiny.svg dbr:Cube_graph dbr:Cubical_graph dbr:File:Biclique_K_3_3.svg dbr:File:Graph-encoded_map.svg |
dbp:title |
Bicubic Graph (en) Cubic Graph (en) |
dbp:urlname |
BicubicGraph (en) CubicGraph (en) |
dbp:wikiPageUsesTemplate |
dbt:Cite_web dbt:Commons_category dbt:Distinguish dbt:Mathworld dbt:Reflist dbt:Short_description dbt:Unsolved |
dcterms:subject |
dbc:Graph_families dbc:Regular_graphs |
rdf:type |
owl:Thing yago:Abstraction100002137 yago:Family108078020 yago:Group100031264 yago:Organization108008335 yago:WikicatGraphFamilies yago:YagoLegalActor yago:YagoLegalActorGeo yago:YagoPermanentlyLocatedEntity yago:SocialGroup107950920 yago:Unit108189659 |
rdfs:comment |
Ein einfacher Graph heißt in der Graphentheorie kubisch oder 3-regulär, falls alle seine Knoten den Grad 3 besitzen. Kubische Graphen sind damit reguläre Graphen. Da 1-reguläre Graphen lediglich eine Paarung darstellen und 2-reguläre Graphen in disjunkte Zyklen zerfallen, sind kubische Graphen sogesehen die einfachsten nichttrivialen Fälle regulärer Graphen. (de) In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph. (en) En teoría de grafos, un grafo cúbico o grafo trivalente es un grafo cuyos vértices son todos incidentes a exactamente tres aristas. En otras palabras, un grafo cúbico es un grafo 3-regular. Un grafo bicúbico es un grafo bipartito cúbico. (es) En théorie des graphes, une branche des mathématiques, un graphe cubique est un graphe régulier de degré 3. En d'autres termes, c'est un graphe dans lequel il y a exactement trois arêtes incidentes à chaque sommet. (fr) 数学のグラフ理論の分野における立方体グラフ(りっぽうたいグラフ、英: cubic graph)とは、すべての頂点の次数が 3 であるようなグラフのことを言う。言い換えると、立方体グラフとは 3-正則グラフである。立方体グラフは 3価グラフとも呼ばれる。2部立方体グラフ(bicubic graph)とは、立方体グラフかつ2部グラフであるようなグラフのことを言う。 (ja) Nel campo matematico della teoria dei grafi, un grafo cubico è un grafo in cui tutti i vertici hanno grado tre. In altre parole un grafo cubico è un grafo 3-. I grafi cubici sono chiamati anche grafi trivalenti. Un grafo bicubico è un grafo bipartito cubico. (it) Куби́ческий граф — граф, в котором все вершины имеют степень три. Другими словами, кубический граф является 3-регулярным. Кубические графы называются также тривалентными. Бикубический граф — это кубический двудольный граф. (ru) Graf kubiczny (ang. cubic graph, trivalent graph) – graf regularny stopnia 3 (graf 3-regularny). (pl) No campo da matemática da teoria dos grafos, um grafo cúbico é um grafo regular no qual todos os vértices tem grau três. Em outras palavras um grafo cúbico é um grafo 3-regular. Grafos cúbicos são também chamados grafos trivalentes. Um grafo bicúbico é um grafo bipartido cúbico. (pt) Кубі́чний граф в теорії графів — це граф, всі вершини якого мають степінь три. Інакше кажучи, кубічний граф це 3-регулярний граф. Кубічні графи також називають тривале́нтними гра́фами. Бікубі́чний граф — кубічний двочастковий граф. (uk) 在图论中,若一个图的每个顶点度数均为三,则称其为立方图(Cubic graph)、3-正则图或三次图。 彼得森图、汤玛森图等都是立方图。 (zh) |
rdfs:label |
Kubischer Graph (de) Grafo cúbico (es) Cubic graph (en) Graphe cubique (fr) Grafo cubico (it) 삼차 그래프 (ko) 立方体グラフ (ja) Graf kubiczny (pl) Grafo cúbico (pt) Кубический граф (ru) Кубічний граф (uk) 立方图 (zh) |
owl:sameAs |
freebase:Cubic graph yago-res:Cubic graph wikidata:Cubic graph dbpedia-de:Cubic graph dbpedia-es:Cubic graph dbpedia-fa:Cubic graph dbpedia-fr:Cubic graph dbpedia-hu:Cubic graph dbpedia-it:Cubic graph dbpedia-ja:Cubic graph dbpedia-ko:Cubic graph dbpedia-pl:Cubic graph dbpedia-pt:Cubic graph dbpedia-ru:Cubic graph dbpedia-sl:Cubic graph dbpedia-sq:Cubic graph http://ta.dbpedia.org/resource/முப்படிக்_கோட்டுரு dbpedia-uk:Cubic graph dbpedia-zh:Cubic graph https://global.dbpedia.org/id/PGsn |
prov:wasDerivedFrom |
wikipedia-en:Cubic_graph?oldid=1099980857&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/Petersen1_tiny.svg wiki-commons:Special:FilePath/Biclique_K_3_3.svg wiki-commons:Special:FilePath/Graph-encoded_map.svg |
foaf:isPrimaryTopicOf |
wikipedia-en:Cubic_graph |
is dbo:wikiPageDisambiguates of |
dbr:Cubic |
is dbo:wikiPageRedirects of |
dbr:Cubic_graphs dbr:Bicubic_graph dbr:Trivalent_graph |
is dbo:wikiPageWikiLink of |
dbr:List_of_Vanderbilt_University_people dbr:Michael_D._Plummer dbr:Nowhere-zero_flow dbr:Barnette's_conjecture dbr:Bipartite_double_cover dbr:Desargues_graph dbr:Algebraic_graph_theory dbr:Apollonian_network dbr:Archimedean_graph dbr:Hypercube_graph dbr:List_of_graph_theory_topics dbr:Pathwidth dbr:Petersen's_theorem dbr:Regular_graph dbr:Robert_Frucht dbr:Cube-connected_cycles dbr:Cubic dbr:Cycle_double_cover dbr:Vertex_cover dbr:Dejter_graph dbr:Desargues_configuration dbr:Descartes_snark dbr:Double-star_snark dbr:Dyck_graph dbr:Dürer_graph dbr:Incidence_coloring dbr:Integral_graph dbr:Kuratowski's_theorem dbr:Truncated_cube dbr:110-vertex_Iofinova-Ivanov_graph dbr:Crossing_number_(graph_theory) dbr:Matroid_parity_problem dbr:Ellingham–Horton_graph dbr:Generalized_Petersen_graph dbr:Petersen_graph dbr:Tait's_conjecture dbr:Quotient_graph dbr:Girth_(graph_theory) dbr:Glossary_of_graph_theory dbr:Graph_coloring dbr:Graph_minor dbr:Möbius_ladder dbr:Continuous-time_quantum_walk dbr:Thomas_Kirkman dbr:Erdős–Gyárfás_conjecture dbr:Anton_Kotzig dbr:Linkless_embedding dbr:Snark_(graph_theory) dbr:Claw-free_graph dbr:Clique_cover dbr:Franklin_graph dbr:Frucht's_theorem dbr:Frucht_graph dbr:Halin's_grid_theorem dbr:Halin_graph dbr:Hamiltonian_decomposition dbr:Harries–Wong_graph dbr:Horton_graph dbr:Pappus_configuration dbr:Pappus_graph dbr:Mark_Ellingham dbr:McGee_graph dbr:Szekeres_snark dbr:743_(number) dbr:Truncated_dodecahedron dbr:Truncated_icosahedron dbr:Truncated_icosidodecahedron dbr:Truncated_octahedron dbr:Wagner_graph dbr:Well-covered_graph dbr:Distance-regular_graph dbr:Distance-transitive_graph dbr:Fáry's_theorem dbr:Gallery_of_named_graphs dbr:Cubic_graphs dbr:Heawood_graph dbr:Linear_arboricity dbr:Ljubljana_graph dbr:Locally_linear_graph dbr:Partial_cube dbr:Truncated_cuboctahedron dbr:Three_utilities_problem dbr:Daniel_Kráľ dbr:Dual_graph dbr:Edge_coloring dbr:Barnette–Bosák–Lederberg_graph dbr:Bridge_(graph_theory) dbr:Fano_plane dbr:Flower_snark dbr:Foster_graph dbr:Graph-encoded_map dbr:Graph_automorphism dbr:Graph_drawing dbr:Graph_embedding dbr:Gray_graph dbr:Harborth's_conjecture dbr:History_of_mathematical_notation dbr:Kempe_chain dbr:Hadwiger_conjecture_(graph_theory) dbr:Hamiltonian_path dbr:Handshaking_lemma dbr:Harries_graph dbr:Heiko_Harborth dbr:Asymmetric_graph dbr:Italo_Jose_Dejter dbr:Balaban_10-cage dbr:Balaban_11-cage dbr:Coxeter_graph dbr:Hypohamiltonian_graph dbr:Uniquely_colorable_graph dbr:Arrangement_of_lines dbr:LCF_notation dbr:Ladder_graph dbr:Laves_graph dbr:Bidiakis_cube dbr:Biggs–Smith_graph dbr:Blanuša_snarks dbr:Symmetric_graph dbr:Herschel_graph dbr:Tietze's_graph dbr:Toroidal_graph dbr:Reconfiguration dbr:Watkins_snark dbr:Marion_Cameron_Gray dbr:Philip_Franklin dbr:Circular_layout dbr:Grinberg's_theorem dbr:Klein_quartic dbr:Klein_graphs dbr:Matchstick_graph dbr:Shortness_exponent dbr:Shuffle-exchange_network dbr:F26A_graph dbr:List_of_unsolved_problems_in_mathematics dbr:Prism_graph dbr:Tutte_graph dbr:Möbius–Kantor_graph dbr:Nauru_graph dbr:Quartic_graph dbr:Tutte_12-cage dbr:Tutte–Coxeter_graph dbr:Rudolf_Halin dbr:Polyhedral_graph dbr:Semi-symmetric_graph dbr:Nondeterministic_constraint_logic dbr:The_Petersen_Graph dbr:Pancyclic_graph dbr:Ronald_M._Foster dbr:Table_of_simple_cubic_graphs dbr:Bicubic_graph dbr:Trivalent_graph |
is dbp:properties of |
dbr:Desargues_graph dbr:Descartes_snark dbr:Dyck_graph dbr:Dürer_graph dbr:Truncated_cube dbr:110-vertex_Iofinova-Ivanov_graph dbr:Ellingham–Horton_graph dbr:Petersen_graph dbr:Möbius_ladder dbr:Franklin_graph dbr:Frucht_graph dbr:Harries–Wong_graph dbr:Horton_graph dbr:Pappus_graph dbr:McGee_graph dbr:Truncated_dodecahedron dbr:Truncated_icosahedron dbr:Truncated_icosidodecahedron dbr:Truncated_octahedron dbr:Wagner_graph dbr:Heawood_graph dbr:Ljubljana_graph dbr:Truncated_cuboctahedron dbr:Barnette–Bosák–Lederberg_graph dbr:Foster_graph dbr:Gray_graph dbr:Harries_graph dbr:Balaban_10-cage dbr:Balaban_11-cage dbr:Coxeter_graph dbr:Bidiakis_cube dbr:Biggs–Smith_graph dbr:Blanuša_snarks dbr:Tietze's_graph dbr:Klein_graphs dbr:F26A_graph dbr:Tutte_graph dbr:Möbius–Kantor_graph dbr:Nauru_graph dbr:Tutte_12-cage dbr:Tutte–Coxeter_graph |
is owl:differentFrom of |
dbr:Partial_cube |
is foaf:primaryTopic of |
wikipedia-en:Cubic_graph |